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Abstract: Numerous reviews have summarized the epidemiology, pathophysiology and the various 

therapeutic aspects of Coronavirus disease 2019 (COVID-19), but a practical guide on ―how to treat 

whom with what and when‖ based on an understanding of the immunological background of the disease 

stages remains missing.  

This review attempts to combine the current knowledge about the immunopathology of COVID-19 with 

published evidence of available and emerging treatment options.  

We recognize that the information about COVID-19 and its treatment is rapidly changing, but hope that 

this guide offers those on the frontline of this pandemic an understanding of the host response in COVID-

19 patients and supports their ongoing efforts to select the best treatments tailored to their patient’s 

clinical status.  

 

 

Figure 1. 
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Introduction 

Since SARS-CoV-2 was first identified in December 2019 in Wuhan, China [1], coronavirus disease 2019 

(COVID-19) has evolved into a pandemic resulting in 223 million infections and almost 4.6 million 

deaths [2]. Due to the rapid global spread of the virus and lack of adequate worldwide vaccine coverage, 

novel viral variants differing in transmission dynamics and pathogenicity have continued to evolve and 

now dominate among patients requiring hospitalization [3, 4]. After exposure to the virus, typically 

through aerosol or droplet particles, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) 

receptor, enriched on the surfaces respiratory [5-9] and intestinal epithelia [9]. Expression of ACE-2 on 

endothelium remains controversial, but some data supports that endothelial infection takes place [10-12].  

The incubation period averages 3 (2-14) days [13-15], subject to host factors [16-21] and viral variant 

involved [22]. A recent metanalysis of 350 studies found that approximately a third of infected 

individuals remain asymptomatic [23] but can still shed virus and transmit the disease [24-27]. Most who 

do develop symptoms experience a mild disease course that may include fever, cough, myalgia, diarrhea, 

sore throat, and a loss of smell and taste [28, 29]. However, since the emergence of new variants and 

more rigorous testing, there has been a shift in the hospitalization risk. Between November 2020 and 

January 2021, the absolute risk of hospitalization overall was 4.7% in individuals testing positive for the 

alpha variant, reaching 21.4% in those over 80 years of age [30]. A more recent study, including over 

43.000 SARS-CoV-2 positive individuals, approximately half of whom were asymptomatic, found a 

hospitalization rate of 2.3% following infection with the delta variant, which after adjustment, is twice the 

hospitalization risk when compared to the alpha variant [31]. 

Of those hospitalized, 20-30% [32] progress to acute respiratory distress syndrome (ARDS), which 

remains the leading cause of death. Among the 4.3%-22.5% of hospitalized patients [32-36], one to two-

thirds of those requiring intensive care [37-39], and as many as 75% with COVID-19-associated ARDS 

may not survive [33].                                                          

Changes in patient management have had a significant impact on outcomes. Inpatient mortality reportedly 

decreased from 26% [40-42] at the beginning of 2020 to 7.6% [41] by mid-2020. Notably, much of this 

development is owed to improved outcomes in hospitalized patients who never progressed to mechanical 

ventilation (MV), whereby there has been little change in the prognosis of those with severe disease [36].  

Vaccinations have reduced the risk of severe disease even more significantly. Recent CDC data showed 

that the risk of infection and hospitalization were 4.9 and 29.2 times lower in vaccinated when compared 

to unvaccinated individuals, respectively. When hospitalization did occur, progression to severe disease 

was significantly less likely in vaccinated patients[43].  

The reported overall case fatality ranges from 0.4%-1%[30, 44], with individual risk determined by a 

relatively well-defined set of parameters [45, 46]. Patients at highest risk for disease progression are [47-

53]: 

 unvaccinated 

 male 

 of older age 

 have comorbidities including obesity (BMI≥30kg/m
2
), hypertension, diabetes 

 have other chronic pre-existing conditions involving the cardiovascular, respiratory or renal 

systems 

Moderate to severe COVID-19 is characterized by a dysregulated immune response resulting in a 

multisystem process dominated by endothelial activation and a prothrombotic state [54-56] and involving 

the cardiovascular, hepatic, renal and neurological systems [57-61]. The multisystem nature of the 

vascular involvement has been illustrated on whole body or lung PET-CTs of COVID-19 patients [62] 

and may even persist in survivors experiencing ongoing symptoms [63].  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

4 

 

Therefore, a thorough understanding of the immunopathology in COVID-19 is critical for selecting the 

most appropriate therapeutic interventions and preventing patient exposure to unnecessary or potentially 

harmful treatments. 

The key immunologic processes of COVID-19 include: 

 an initial rapid increase in viral load 

 excessive and prolonged innate immune activation 

 epi-and endothelial barrier dysfunction 

 a pro-coagulant state 

 excessive pulmonary neutrophil recruitment and formation of neutrophil extracellular traps 

(NETs)  

These processes are also implicated in other infectious and inflammatory conditions. It remains to be 

determined if and to what extent the immune mechanisms observed in COVID-19 indeed differ from 

infectious and non-infectious conditions such as SIRS, inflammatory ARDS, and other systemic 

hyperinflammatory states.  

To classify disease severity and assist in standardizing of research protocols, the WHO has developed an 

ordinal 9 point scale (Figure 1) reflecting the various stages of disease progression [64, 65]. Applying 

this scale, this article attempts to match the underlying immunopathology of COVID-19 with evidence-

based treatment modalities published in the peer-reviewed literature. We recognize that during the 

progression of the disease to severe COVID-19, these processes overlap, influence one another, and are 

causally linked. As the clinical picture evolves, different processes emerge and therapeutic targets change. 

Our knowledge of the immunopathology and therapeutic options in COVID-19 is expanding daily. Best 

up to date advice will be found online through resources, such as the regularly revised websites of the 

NIH and WHO. 

 

1. WHO 9 point Scale, Patient Stage 0. No clinical or virological evidence of infection 

 

Until vaccines achieve protection at a population level, social distancing, face masks, and hand hygiene 

are effective and necessary measures mitigating infection risk [66].  

Over 114 vaccine candidates utilizing a diverse set of technologies are currently in clinical 

development[67]. Vaccination with mRNA constructs targeting influenza, rabies, zika or chikungunya 

virus have been subject to research efforts for some time and are now applied to SARS-CoV-2 [68-70]. 

Of those, two mRNA based vaccines, mRNA1273 from Moderna, Tozinameran from 

the BioNTech/Pfizer partnership and two adenovirus-vector vaccines, AZD1222 from AstraZeneca and 

the single-dose Janssen/Johnson & Johnson vaccine, have been granted Emergency Use Authorization 

(EUA) as COVID-19 vaccines in the US since December 2020. 

In addition, an adjuvanted inactivated virus vaccine by Sinovac and the heterologous recombinant 

adenovirus vaccine Sputnik V have been in widespread use. 

Vaccines provide high-level protection from SARS-CoV-2 infection and severe disease and elicit a robust 

antibody and B- and T- cell response [71, 72]. However, despite the effective initial humoral vaccine 

response, neutralization activity declines over time. To what extent serum antibody titers are a proxy for 

reinfection risk remains to be determined, but evidence for neutralizing activity and protection from 

(re)infection is emerging[73].  

A recent large study demonstrated that antibody titers in response to the two most widely used mRNA 

vaccines decreased significantly after six months [74]. In addition, vaccine-induced efficacy against 

emerging viral variants is reduced [75, 76], supporting recent discussions for the need for booster 

vaccines. 
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In summary, the observation of breakthrough infections in vaccinated people, decreasing antibody titers 

following vaccination and emergence of new escape variants all highlight the ongoing need for close 

surveillance of this highly dynamic situation.  

 

Based on published evidence, therapeutic recommendations include  

Since vaccines have become available, other prophylactic measures have become less relevant. However, 

they may remain of importance for select high-risk individuals, especially when suboptimal vaccine 

responses may be expected, such as in the immunocompromised. 

1. Vaccines 

as discussed above 

2. Casirivimab and Imdevimab 

The use of the monoclonal antibody combination casirivimab plus imdevimab (see below) as post-

exposure prophylaxis has been shown to result in a significant reduction of symptomatic SARS-CoV-2 

infections compared with placebo (1.5% vs 7.8%; OR 0.17; p<0.001) [77]. As a result of these findings, 

the Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) for this 

combination as post-exposure prophylaxis within seven days [78]. 

3. Topical Interferon-1𝛼 

Type 1 Interferon is critically involved in the early antiviral response [79, 80] (see below). Prophylactic 

use of IFN-1𝛼 nasal drops four times daily in 3000 uninfected health care workers (HCWs) resulted in no 

symptomatic SARS-CoV-2 infections in any of the patient-facing staff [81]. Controlled studies 

investigating the role of IFN-1𝛼 in preventing COVID-19 are underway (NCT04552379, NCT04320238) 

[82].     

                                                                                                            

 
 

2. WHO 9 point Scale, Patient Stage 1. Infection, Ambulatory, no  limitation of activities 

During the incubation period, patients are asymptomatic, and many will never develop symptoms as 

described above. In others, epithelial infection and local inflammation may result in symptoms consistent 

with a mild viral infection [83].  

As in most the disease does not progress further, the critical question here is if treatment is 

required at all and, if so, for whom.  
High-risk patients should be monitored closely to initiate therapeutic interventions at the first signs of 

disease progression.  

SARS-CoV-2 replication peaks early, at symptom onset, so the timing of virostatic therapies is critical. 

Delayed antiviral treatment may shorten viral shedding but not significantly affect the viral load (VL) 

[84].  Outpatients with a higher VL one week after symptom onset are more likely to be hospitalized and 

prolonged shedding of replication-competent virus is associated with more severe disease [21, 85, 86]. 

This suggests that early antiviral treatment may curb the rapid early replication and possibly influence the 

risk of disease progression. 

Take home messages for this stage: 

1. Social distancing, wearing face masks, eye protection and hand hygiene are effective measures 

mitigating an infection risk  

2. Vaccination is the primary prophylactic measure. Until final data analysis of future phase III/IV 

trials are available, the duration of protection from clinical disease will remain undetermined. 

3. Combination treatment of casirivimab and imdevimab is effective postexposure prophylaxis  

4. Other prophylactic measures such as IFN-1𝛼 and monoclonal antibody preparations might be of 

value in certain high risk groups 
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Based on published evidence about this disease stage, therapeutic recommendations include  

1. Antiviral therapy:  

Nucleotide analogs - remdesivir, favipiravir, galidesivir and others [87] - mainly act by inhibiting the viral 

RNA-dependent RNA polymerase and thereby viral replication.  

a. Remdesivir (RDV) is an adenosine analogue initially developed as a treatment against Ebolavirus 

[88-91]. It is administered intravenously (iv.) as oral bioavailability is poor. Lipid analogues [92] and 

dry powder preparations for inhalation [93] addressing this shortcoming are under development. 

Treatment duration in trials range from 5 to 10 days, dosed at 200 mg OD on day one followed by 

100mg. The primary dose-limiting effect is hepatotoxicity, and monitoring of liver function and 

coagulation is recommended.  

Key trials assessing RDV use in COVID-19 [94] have limited enrolment to hospitalized patients.  

In ACTT-1 (Adaptive COVID-19 Treatment Trial), a double-blinded and placebo-controlled trial 

[95], RDV accelerated clinical recovery (10d vs 15d, p<0.001) and reduced 28 day mortality, driven 

by patients at WHO stage 4 (HR 0.30 [0.14-0.64]) [95]. In SIMPLE-1 [96], five days of RDV in 

addition to standard of care was associated with clinical improvement at day 11 in hospitalized 

patients, mainly at WHO stage 3 (OR 1.65; [1.09-2.48], p=0.02) [96, 97].  

In the much larger WHO-led Solidarity trial (11,266 hospitalized patients of varying severity), RDV 

did not impact 28 day mortality (HR 0.95; [0.81-1.11] overall; HR 0.86; [0.67-1.11] not ventilated, 

HR 1.2; [0.80-1.80] ventilated), progression to MV or length of hospital stay. This included patients 

without oxygen requirement WHO stage 3, as well as 4ff [98].  

As a result of the above, the WHO no longer recommends RDV for the treatment of COVID-19 [99]. 

On the other hand, the NIH advises to include RDV for hospitalized patients receiving noninvasive 

O2 supplementation or those at high risk for disease progression. An already initiated RDV course 

should be completed in patients progressing to WHO stages 5 and beyond [100]. Starting RDV in 

mechanically ventilated patients is not recommended. 

b. Molnupiravir (EIDD-2801) is currently undergoing phase II/III trials. Earlier work has shown 

effective inhibition of viral replication of SARS-CoV-2 in vitro and in animal models [101]. In two 

dose-escalation studies in outpatients with mild COVID-19, molnupiravir was safe, well-tolerated, 

and shortened viral shedding compared to placebo [102, 103]. While molnupiravir did not benefit 

hospitalized patients, a phase II/III study is currently investigating its impact on hospitalization rate, 

clinical characteristics and mortality in outpatients with mild to moderate COVID-19. Its oral 

bioavailability may be an asset in the ambulant setting [104].  

c. Favipiravir has been evaluated in mild to moderate COVID-19 patients, most not requiring 

oxygen[105], was well-tolerated, and accelerated viral clearance. It is now undergoing further study 

in outpatients[106]. 

Novel antiviral agents continue to be developed[107], such as PF-07304814, a SARS-CoV-2 protease 

inhibitor for which phase 1 results are awaited (NCT04535167). Several agents are in pre-clinical 

development, and more data is likely to become available over the following months.  

2. Blocking (co)-receptors, preventing viral entry into host cells.  

a. Recombinant human ACE2 (rhACE2) receptor [108] as decoy therapy has been used, to some 

encouraging effect, in a small case series of patients with non-COVID-19 associated ARDS [109], 

suggesting a mechanism of action other than viral neutralization. Instead, rhACE2 may restore 

homeostasis of the ACE2/Ang1-7/MasR system, as lack of ACE2 mediates both epi- and endothelial 

inflammation (see below). Concerns for negatively impacting pulmonary autoregulation have not 

been substantiated [482]. 

b. In addition to ACE2 binding, viral entry requires proteolysis of the spike protein by the host-enzyme 

TMPRSS2 [110], which is androgen-dependent, which may account for some of the observed risk 
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disparity. Serine protease (TMPRSS2)-inhibitors such as nafamostat and camostat mesylate [111, 

112] are being explored for use in mild COVID-19 [113]. The latter expedited recovery by 40% in 

outpatients with mild disease by day five [114] but had no impact on clinical improvement, admission 

rate to intensive care or mortality in hospitalized patients [115]. Since nafamostat also inhibits 

fibrinogen proteolysis, it has been proposed as a short-acting anticoagulant at later disease stages 

[116-118]. Single reports of cerebral bleeds on this treatment require careful consideration [483].  

c. Maraviroc, an inhibitor of chemokine receptor CCR5, is used widely in HIV therapy. Maraviroc 

inhibits the viral SARS-CoV-2 protease in vitro [119]; and is currently being evaluated in phase II 

trials in ventilated COVID-19 patients (300mg BD for 14days, NCT04441385, NCT04435522) as 

well as in patients with moderate disease (NCT04710199). Animal data suggest that this compound 

may also have additional benefits by reducing neutrophil recruitment to the lung in severe COVID-19 

[120]. 

      None of these treatments is recommended outside clinical trials yet.  

3. Anti-SARS-CoV2 monoclonal antibody preparations  

While recommended in the beginning of the pandemic, bamlanivimab and etesevimab, the recent 

emergence of escape variants has led to their replacement by new antibody preparations.   

a. REGN-CoV2 contains two anti-spike receptor-binding-domain (RBD)-antibodies, casirivimab and 

imdevimab. In SARS-CoV-2 positive outpatients, one dose accelerated viral clearance and symptom 

resolution (13 vs 6 days) among seronegatives [121]. The effect on seroconverted individuals was less 

pronounced. An RCT assessing 2.4g or 8g of casirivimab/imdevimab, administered within 7 days 

from symptom onset in SARS-CoV-2-positive outpatients reduced medically attended visits in the 

combined treatment group compared to placebo by half (6% vs. 3% overall), and from 15% to 6% in 

seronegative patients [122]. Data indicates that REGN-CoV2 benefits outpatients with mild COVID-

19, who are at risk for disease progression. 

b. Results for VIR-7831 (Sotrovimab), a monoclonal antibody with Xtend technology prolonging its 

half-life and expected to enhance pulmonary absorption, has been assessed in SARS-CoV-2 infected 

outpatients with mild or moderate illness (COMET-ICE trial). A single i.v. dose of 500mg resulted in 

a subsequent reduction of relative risk for hospitalization or death by 85% compared to placebo 

(p=0.002) [123].  

c. Nanobodies are antibody fragments consisting of a single monomeric variable antibody domain 

occurring naturally in camelids and sharks.  Nanobodies with a high affinity for spike protein, 

effectively competing with ACE-2 and recognizing epitopes that are structurally not accessible to 

conventional antibodies are being explored as neutralizing antiviral agents, currently at the pre-

clinical stage [124, 125]. 

 

4. Hydroxychloroquine (HCQ)  

Among its many anti-inflammatory and anti-thrombotic effects, HCQ interferes with viral uptake and 

intracellular transport by altering the endosomal pH. However, HCQ failed to demonstrate an impact on 

clinical outcome or survival in exposed presymptomatic individuals [126, 127], including those with mild 

disease [128, 129], those hospitalized with or without O2 requirement and with severe COVID-19 [130, 

131]. HCQ prolongs the QT interval, which, particularly in patients with underlying cardiac problems, is 

another argument against its widespread use [132]. Two metanalyses on the effect of HQC in combination 

with Azithromycin demonstrated an increase in mortality among hospitalized patients (RR 1.27 [1.04-

1.54]; RR 1.11 [1.02,1.20]) [134, 133]. 

5. Ivermectin (IVM) 

This anthelminthic agent has received attention as an inhibitor of intracellular viral transport in vitro, 

however at MICs well above what would be safely achievable in vivo [135]. Heterogeneity of data 

available has complicated their interpretation [137]. A recent metanalysis of 10 RCTs in 1173 patients 
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evaluating its use in COVID-19 has not identified a clinical or survival benefit [136]. The use of IVM is 

not recommended outside of clinical trials.  

 

 
 

3. WHO 9 point Scale, Patient Stage 2. Infection, Ambulatory, limitation of activities  
 

At this disease stage, patients may display signs of a lower respiratory tract infection or mild pneumonitis 

with cough and fever. 

Alveolar macrophages (AMs) are the first line of defense and respond to PAMP/TLR signaling triggered 

by infected alveolar epithelial cells (AEC)[138]. Both produce pro-inflammatory cytokines (IL1𝛽, IL8, 

IL18, TNFα , IFN𝛾) and chemokines (CXCL2) that recruit peripheral immune cells to the lung. Epithelial 

infection also downregulates regulatory ligands, removing the tolerizing epithelial interaction with, and 

disinhibiting, AMs [139, 140]. 

The viral receptor ACE2 is part of the ACE2/angiotensin-(1-7)/MAS axis of the Renin-Angiotensin-

System[141], which counteracts the pro-inflammatory and vasoconstrictive effects of Angiotensin 2 

(AT2) by cleaving it to Ang1-7 [142]. After binding SARS-CoV-2, ACE2 is internalized [143-145], and 

AT2 will accumulate as a result. Mediated by the Angiotensin 2 receptor 1 (AT1R)[146-148], AT2 

upregulates endothelial adhesion molecules, facilitates leukocyte recruitment [141, 149], and polarizes 

macrophages towards a pro-inflammatory M1 phenotype [150-153].  The conversion of AT2 by ACE2 

into anti-inflammatory Ang1-7 is impaired, and excess AT2 damages epi- and endothelial integrity 

through its inflammatory, vasoconstrictive and pro-fibrotic effects [154]. ACE2 downregulation induced 

by SARS-CoV-2 infection exacerbates a pro-inflammatory state, causing lung damage that may exceed 

the initial viral cytopathic effect [144, 145].   

The key questions at this disease stage are: 

a. how likely the patient will progress to more severe disease based on his/her risk profile and 

b. which biomarkers should be measured to assess the risk for progression 

Most risk scores have been validated in hospitalized patients, and little is available to help with stratifying 

risk in outpatients [155-157]. 

An acuity score predicting hospitalization, intensive care admission, or mortality risk in COID-19 patients 

based on 30 parameters performed well. Blood pressure, respiratory rate and SaO2 were the most relevant 

predictors, feasible in most outpatient settings [158]. 

Biomarkers indicative of innate immune cell activation and epithelial damage are now useful to predict 

disease progression. CCR5, IL1ra and IL10 may predict a severe disease course up to a week prior to 

clinical deterioration [159]. Until such specific biomarkers become widely available, it is important to 

consider vital signs and laboratory parameters that are accessible without delay. These include 

hsTroponin, proBNP,  IL-1, LDH, transaminases, renal function, inflammatory markers and coagulation 

Take home messages for this stage: 

1. Timing of antiviral therapies is likely critical but due to lack of data no recommendations for their 

use in outpatients can be made 

2. Post exposure prophylaxis with selected anti-SARS-CoV2 monoclonal antibody preparations are 

recommended in high risk individuals  

3. Agents blocking (co)-receptors, preventing viral entry into host cells remain under investigation with 

some having shown clinical benefit 

4. Hydroxychloroquine has failed to demonstrate any clinical or survival benefit for all disease stages  

5. The use of ivermectin is not recommended outside of clinical trials 
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testing which indicate early extrapulmonary end organ involvement and have been shown to assist with 

clinical assessment and guide management decisions (discussed below). 

 

Based on published evidence about this disease stage, therapeutic recommendations include:  

 

1. Antiviral therapy  

As discussed above, antivirals may theoretically be of benefit but have not been sufficiently studied in 

outpatients. The development of RDV preparations for inhalation in outpatients considered at risk of 

progression may add therapeutic options before admission becomes necessary [93, 160]. 

2. Anti-SARS-CoV2 monoclonal antibody preparations  
The recommendations for the use of anti-SARS-CoV2 monoclonal antibody preparations as discussed 

above apply for this disease stage as well. 

3. Interferon III (IFN- 𝜆)                 

IFN- 𝜆 is exclusively expressed by respiratory and gastrointestinal epithelia. Hematopoietic cells lack 

IFN- 𝜆 receptors, and therefore it has little systemic pro-inflammatory effect. With a favorable safety 

profile observed in phase II hepatitis D trials [161,162], IFN-𝜆 seems an attractive candidate for COVID-

19 therapy. Initial data on IFN- 𝜆 use in outpatients (180mcg once s/c.) showed accelerated viral 

clearance if IFN- 𝜆 was administered within five days of symptom onset compared to placebo [163]. 

Others, administering IFN- 𝜆 within three days of symptom onset, did not find such benefit [164]. The 

side effect profile was favorable, with transient transaminitis being the main reported adverse event. 

4. Budesonide 

GCs may downregulate ACE2 in respiratory epithelia[165] and reduces airway inflammation, possibly 

impacting the beginning of epithelial and macrophage-driven host response.  The STOIC trial of and age-

stratified cohort with mild COVID-19 symptoms for less than seven days. Intervention was open-label, 

800mcg Budesonide dry powder inhalation BD until symptom resolution compared to SOC. Medically 

attended visits and hospitalizations were fewer (14% vs 1%; p=0.004), and symptom resolution faster (7 

vs 8 days, p=0.007) [166]. The treatment was well-tolerated, encouraging larger placebo-controlled trials 

that target mildly affected outpatients.  

 Convalescent plasma (CP)  
CP has been widely administered to patients with COVID-19, often with advanced disease. Patients may 

have already seroconverted and have neutralizing anti-SARS-CoV2 concentrations equivalent to those 

contained in CP [167] (Table 1). CP may contain pro-inflammatory and pro-coagulant factors [168]. 

Further, SARS-CoV2 specific antibody titers vary greatly [169]. Antibody kinetics in COVID-19 differ:  

nonsurvivors have a delayed antibody response, whereas survivors produce neutralizing antibodies more 

rapidly [170]. Based on this observation and considering the abovementioned caveats, the timing of 

exogenous antibody administration seems critical. 

As the majority of studies on CP use have been uncontrolled, it is not surprising that efficacy assessments 

of a metanalysis including 30 studies and RCTs with 17.225 patients [171] were inconclusive (―very 

uncertain‖) and found no effect on mortality or clinical improvement at 28 days.  

CP outside of clinical trials is no longer recommended, except for patients with impaired humoral 

immunity. A recently published open-label RCT on CP use in 921 hospitalized patients was terminated 

early for futility. The risk for intubation or death by day 30 did not differ (32.4% in the CP group, 28.0% 

in the SOC group; RR 1.16; [0.94–1.43] P = 0.18) and patients receiving CP experienced more serious 

adverse events (33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57, P = 0.03)[172].  

 AT1R blockers, ACE-inhibitors (ACEi)  
This drug class was initially hypothesized to impact COVID-19 outcomes either by restoring homeostasis 

of the ACE2/Ang1-7/Mas-R system; or conversely by upregulating tissue-resident ACE2. A metanalysis 
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of 21 studies[173] did not support a difference in risk of death (pooled OR 1.29 [0.89-1.87] p=0.18) or 

disease severity (pooled OR 0.94 [0.59-1.50] p=0.81) in patients who had been receiving ACEi when 

contracting SARS-CoV-2. Since then, several studies assessing the impact of discontinuing ACEi 

treatment upon COVID-19 diagnosis have not identified a difference in disease severity or death. 

Discontinuation of ACEi/ARB treatment in those already using these agents is therefore not justified. 

  Azithromycin (AZM)  

Besides its antimicrobial properties, AZM has immunomodulatory effects. It repolarizes macrophages 

towards tissue-restorative M2 and inhibits pro-inflammatory NF𝜅B and STAT1 signaling [174, 175]. 

However, in patients with a moderate oxygen requirement (WHO stage 4), AZM did not impact 

progression to MV or death [176]. As macrolides prolong the QTc interval, their use should be carefully 

monitored, especially in older patients or in combination with other pro-arrhythmogenic agents. Most 

studies have investigated AZM in combination with HCQ and repeatedly identified an increased mortality 

risk associated with this combination [133]. AZM is therefore not recommended in the treatment of 

COVID-19.  

 

 

 

4.   WHO 9 point Scale, Patient Stage 3. Hospitalized, no O2 requirement 

 

Hospitalization becomes necessary in approximately 4.7% of infected individuals. The risk in patients 

over 60 years is higher – approximately between 10 and 20% [30]. The decision to admit patients not 

requiring O2 will be informed by a comprehensive assessment of clinical, laboratory and imaging findings 

[177], with more pro-active management of risk groups and the availability of healthcare resources.  

Several clinical scores have been developed to distinguish those at risk for disease progression at the time 

of hospitalization (Table 2). A moderately accurate prediction of future severe COVID-19 disease can be 

achieved by combining the results of CT findings of the lung, inflammatory markers (C-reactive protein, 

ferritin, neutrophils, lymphocytes, albumin), evidence of tissue injury (transaminases, LDH, Troponin, D-

Dimer) and evidence of  electrolyte imbalance (blood urea, electrolytes)[178]. Lymphopenia and 

neutrophilia, expressed as elevated NLR (neutrophil/lymphocyte ratio) on admission are consistently 

associated with disease progression and death [179, 180].  

A metanalysis of 5699 patients showed that an elevated NLR on admission increased the risk of death 

almost threefold (RR2.74 [0.98-7.66][181]. Leukocytosis, elevated LDH, procalcitonin, and transaminitis 

were associated with increased risk of ICU admission and death [32], while lymphopenia, elevated CRP 

and fibrinogen on admission predicted an O2 requirement [182]. Another metanalysis including 4969 

patients found that neutrophilia and lymphopenia on admission was associated with a significantly 

increased risk of progression to severe COVID-19 (OR 7.99; 1.77-36.14 resp. OR 4.2; 3.46-5.09,) and 

death (OR 7.87; 1.75-35.4, resp. OR 3.71; 1.63-8.44) [183].  

Take home messages for this stage: 

1. Risk assessment in mildly symptomatic outpatients should integrate demographic factors, extent 

of respiratory symptoms, neutrophil/lymphocyte ration, inflammatory markers and biomarkers of 

extrapulmonary tissue injury 

2. Anti-SARS-CoV-2 monoclonal antibody preparations are recommended in high risk individuals 

3. Inhaled budesonide in ambulatory patients not requiring oxygen may be beneficial but requires 

more detailed assessment 

4. Evidence does not support the use of azithromycin and, especially in combination with HCQ, may 

inflict harm. 
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Biomarkers that may be helpful to assess risk for disease progression at this stage reflect activation of 

innate immunity, immune cell recruitment, and beginning damage to epithelial and endothelial barriers 

and tissue injury.   

Blood samples of COVID-19 patients show significantly higher levels of circulating endothelial cells 

(CECs) on admission than those with other respiratory infections, demonstrating early and extensive 

endothelial injury [184]. Epithelial and endothelial damage begins long before a patient is admitted to 

the ICU, and CECs, if available, may be of prognostic value now [185]. Other markers of endothelial 

activation with discriminatory value at this stage are von Willebrand Factor (vWF), angiopoietin (Angpt-

1/Angpt-2 ratio, see below) and  soluble urokinase plasminogen activator receptor (suPAR). Early 

discharge and mild disease trajectory have been predicted by a suPAR of ≤2ng/mL with high specificity 

[186]. 

Of all cytokines measured in over 1400 COVID-19 patients at hospitalization [187], IL-6 and TNFα 

levels independently predicted disease severity and death, outperforming CRP, D-Dimers and ferritin. 

Higher CRP, IL-6, IL-8, IL-10, TNFα and IL-2R levels on admission were found in those patients later 

progressing to critical illness and/or death [188].  

Hospitalization and progression to severe disease could also be predicted by a decision algorithm 

integrating demographic risk factors and comorbidities with immune cell profiling [189]. 

At this stage, replicating virus may rarely be present in blood [190, 191]. Viremia and RNAemia in 

COVID-19 increase the risk of critical disease and death six- to elevenfold [192-194].  

Considering more widely available markers, the combination of elevated LDH, CRP and decreased 

lymphocyte counts predicted ten-day mortality [195]. The combined analysis of the patient’s age, CD4
+
 

lymphocyte counts and LDH was a clinically useful composite for disease progression (AUC 0.92) [196]. 

In summary, markers of inflammation (CRP, ferritin), cardiac (troponin, BNP), epithelial (Angpt-2) and 

endothelial injury (CECs), combined with pre-existing clinical risk factors, may provide the best 

assessment for disease progression. Angpt-2 and CECs may also be helpful biomarkers in patients at risk 

for disease progression before an O2 requirement develops but may not be widely available.  

 

The Lung Injury Prediction Score (LIPS) assessed the risk of ARDS at time of hospitalization in a variety 

of conditions [197-201]. Even though not validated for COVID-19 ARDS, its positive predictive value 

for this indication was enhanced significantly when Angiopoietin 2 (Angpt-2), CRP, and the FiO2/SpO2 

ratio within 6h of admission were included.  

 

Multiorgan involvement, including coagulopathy, myocardial, liver, intestinal and kidney injury, may all 

precede respiratory manifestations[202, 203]. Myocardial injury on admission in particular predicts poor 

outcome, especially if both troponin and proBNP are elevated. Higher troponin levels on admission are 

accompanied by higher D-Dimers, fibrinogen, creatinine, WBC, and procalcitonin levels, reflecting organ 

involvement beyond the respiratory and cardiac systems. 

In a metanalysis published by Figliozzi et al., evidence of acute cardiac injury was by far most predictive 

for poor outcome (OR 10 [5-22.4]), followed by renal injury and low platelet and lymphocyte count 

[204]. Metadata from 10 clinical studies generated two predictive equations including CRP, neutrophil, 

lymphocyte count +/- D dimer, resulting in a sensitivity of 0.76 (0.68) and specificity of 0.79 (0.83) when 

applied to a cohort of patients [205].  

Future works must emphasize parameters that predict deterioration at a time point when therapeutic 

interventions can counteract disease progression. Based on a recent UK study on COVID-19 patients 

presenting to the emergency department, strict implementation of simple clinical observations while 

considering demographic risk factors outperforms the prognostic value of laboratory biomarkers [206]. 
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Finally, a recent study reports that Anti-DNA and anti-phosphatidylserine antibodies, determined at 

hospital admission, correlated strongly with progression to severe disease (PPV 85.7% and 92.8%). 

Antiphospholipid antibodies have been observed in COVID-19 patients since the very beginning of the 

pandemic [207]. This suggests that autoantibodies following the initial viral insult contribute to the 

pathology at later stages of COVID-19. 

Based on published evidence about this disease stage, therapeutic recommendations include:  
 

1. Antiviral therapy.   
The WHO no longer recommends antivirals for hospitalized patients. NIH guidelines however suggest 

that RDV may be used in hospitalized patients at high risk of disease progression with or without oxygen 

requirement (WHO stage 3, 4). 

2. Corticosteroids:  

RECOVERY assessed dexamethasone in hospitalized patients of varying severity. There was no benefit 

seen in patients who did not require ventilatory support (OR 1.19; 0.91-1.55) [208] or in those with early 

disease (symptom duration <7days) [208]. Concerns for early steroid use would include 

immunosuppression at a time when viral replication may still be very active [209, 210]. In a metanalysis 

of five RCTs including 7692 patients, steroid use in patients without O2 requirement was even associated 

with an increased mortality risk (RR 1.23 [1.00-1.62]; p=0.05) [211]. In summary, there is presently no 

evidence to support the use of steroids at WHO stage 3. 

2. Interferons                    

Interferons (IFN), produced by lymphocytes (Type II: IFN-𝛾) and epithelia (Type III: IFN-𝜆) are some of 

the most effective antiviral defense mechanisms. Type I IFNs (IFN𝛼, IFN𝛽) initiate an antiviral response 

through their receptors INFAR1/2, widely expressed on epithelial, endothelial and myeloid cells. INFAR 

engagement activates Janus Kinase (JAK1), which mediates inflammation and antiviral effects [212].  

While the use of a pro-inflammatory signaling molecules seems counterintuitive initially, the timing of 

IFN-I administration in relation to viral replication is critical. The replication of SARS-CoV-2 is reported 

to peak already at symptom onset. A rapid IFN-1 response controls viral replication, whereas a delayed 

IFN-1 rise results in excessive inflammation and tissue damage instead [82, 213-215].   

In critically ill COVID-19 patients, IFN-1𝛼 and 𝛽 responses are impaired, virus persistence is prolonged 

and systemic inflammatory markers are comparatively high [216, 217]. SARS-CoV-2 produces only a 

weak early IFN-1 response in vitro [217]. A suppressed early IFN-1 response may allow viral replication 

to peak unopposed and contributes to the excessive inflammation seen in patients with severe disease 

[213, 214]. It follows that exogenous IFN-1 should be beneficial early, while delayed administration 

could easily be harmful [218].  

Results of important IFN trials are summarized in Table 3. The Solidarity trial assessed IFN-β1a therapy 

at WHO stages 3-6. It failed to demonstrate a survival benefit overall and suggested worse outcomes 

among ventilated patients.  

Three trials in hospitalized patients (WHO stages 3-5) treated with either IFN-β1b s.c. for two weeks or 

nebulized IFN-β1a resp. IFN-α2b within five days of admission suggested accelerated clinical 

improvement, reduced ICU admissions and lower mortality [219]. Treatment more than five days after 

admission however increased mortality (aHR 0.05 [0.01-0.37] early treatment, 6.8 [1.41-40.8] p=0.2 late 

treatment) [220].  

In a phase II placebo-controlled study of nebulized IFN-β1a [221] in hospitalized patients, at WHO stages 

3 and 4, IFN treatment still reduced the risk of severe disease or death significantly even though median 

symptom duration was ten days (OR 0·21 [0·04–0·97]; p=0·046). IFN-I may therefore retain a benefit for 

longer than suggested, at least in the noncritically ill [222].  
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3. Heparin   
The International Society for Thrombosis and Hemostasis (ISTH) recommends low molecular weight 

heparin prophylaxis for all hospitalized patients with COVID-19 and supports its continuation for 2-6 

weeks following discharge [223, 224].  

The benefit of heparinization leading to improved organ support free survival in noncritically ill 

hospitalized patients has now been backed up by results from ATTACC/ACTIV-4a/REMAP-CAP and 

CORIST studies (see below). In the noncritically ill hospitalized group, therapeutic anticoagulation may 

be superior to prophylactic dosing, but more data is required [225, 226]. 

 Anti-SARS-CoV2 monoclonal antibody preparations 

Monoclonal antibodies failed to demonstrate a benefit in hospitalized patients [227, 228], and are no 

longer recommended regardless of oxygen requirement, except in patients with humoral 

immunodeficiency [229].  

 

 

 

5. WHO 9 point Scale, Patient Stage 4 Hospitalized, O2 requirement by mask or nasal prongs  

 

The reported rate of patients progressing to stage 4 varies widely, but a large proportion of those admitted 

will require oxygen supplementation. Mortality in this group can be significant, even in those not 

dyspneic at presentation[230].  

In a subset of patients, the controlled antiviral response transitions to a dysregulated immune response 

during this WHO stage, possibly even earlier. The clinical presentation is now characterized by ongoing 

respiratory epithelial and endothelial damage, followed by excessive recruitment of activated innate and 

adaptive immune cells. The most relevant immunopathologic processes, which in our opinion characterize 

stage 4 and overlap in many aspects with stages 3 and 5, are outlined below. 

a. Disrupted AT2/ACE2 homeostasis  

The downregulation of ACE-2 in cells infected by SARS-CoV2 leads to elevated AT2 levels, vasomotor 

disturbance, increased ventilation-perfusion (V/Q) mismatch (ventilation of non-perfused lung areas), 

microcapillary leaks, and epithelial apoptosis [143-145]. AT2’s pro-inflammatory effects via NFkB [141] 

enhance leukocyte-endothelial interactions through upregulation of ICAM-1 and VCAM-1, setting the 

stage for NETosis and thrombotic complication (see below) [231, 232]. 

 

b. Macrophage activation and polarization 

Monocytes and macrophages are key elements of the early antiviral response, dominate the developing 

dysregulated inflammatory process, and are the drivers for cytokine excess, neutrophil and lymphocyte 

recruitment, development of barrier dysfunction and tissue fibrosis [233, 234].  

Depending on their environment, macrophages exist on a spectrum from pro-inflammatory M1, 

responsible for pathogen killing, production of reactive oxygen species (ROS) and proinflammatory 

cytokines (IL1b, TNFα, IL6, IL18) [235], to M2 cells with a focus on phagocytic activity, promoting 

immune tolerance, fibrosis and tissue repair [236-238]. Non-inflammatory removal of apoptotic 

Take home messages for this disease stage: 

1. Patient risk stratification for disease progression is a critical step during this diseases stage. 

Clinical risk scoring systems could assist this, in conjunction with immune cell profiling, imaging 

results and appropriate biomarkers 

2. Interferon therapy, administered within 3-5 days of admission may be of benefit at this stage but 

more evidence is needed for a recommendation to be made.  

3. Heparin prophylaxis should be initiated in all hospitalized patients with COVID-19  

4. The use of GCs and monoclonal antibodies at this stage is not recommended 
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immune cells, efferocytosis, is a unique feature of M2 macrophages [239]. Activated alveolar 

macrophages (AM) [138, 140] recruit bone-marrow derived monocytes to the lung [240, 241], where they 

adopt an M1 phenotype, complementing the antiviral response but also amplifying tissue damage [242] 

and initiate massive neutrophil recruitment and activation of Th1 and Th17 cells [243]. 

Histopathology of autopsied lungs of patients with COVID-19 ARDS implies a crucial role for 

macrophage activation and the subsequent neutrophil migration [244, 245]. The persistence and 

prolonged activation of M1 macrophages result in an excess of pro-inflammatory mediators, 

reactive oxygen species, enzymes and accumulating cellular debris all of which is detrimental to 

epi/and endothelial integrity [235, 246-248]. Once the inflammatory stimulus is removed, M1 must 

revert to M2 macrophages to begin a ―clean up and repair program‖ and deactivate the previous ―pro-

inflammatory program‖. Otherwise, the inflammatory process will persist [249, 250]. One of the factors 

inhibiting the repolarization to M2 is netosis, thereby exacerbating tissue damage [251]. 

c. Activation of the VEGF-Angpt-1/2-Tie2  system  

High Angpt-2 levels predict ICU admission at the time of hospitalization [252]. Patients with Angpt-2 

levels above 5000pg/mL were 10 times more likely to require ICU care (OR 9.33 [2.35-44.9]). Angpt-2 

was the only blood parameter correlating with compliance measures during MV 

(mL/cmH2O, r = − 0.46, p = 0.01) and renal function, emphasizing the prognostic relevance of biomarkers 

of endothelial activation and microvascular damage during this stage.  

Pulmonary neutrophil recruitment may be associated with further significant clinical deterioration and 

escalation of respiratory support [244]. Therefore, a high NLR as well as markers of epithelial and 

endothelial damage (low VEGF2R levels and low Angpt-1/2 ratio (see below) is expected to have 

prognostic value at this stage [202, 253-256]. 

 

Based on published evidence about this disease stage,  therapeutic recommendations include:  

 

1. Antiviral therapy: see recommendations as detailed under prior WHO stages 

2. Steroids: GCs have many anti-inflammatory properties, including the repolarization of macrophages 

towards M2 and inhibition of neutrophil recruitment [257, 258]. 

The RECOVERY trial yielded landmark data on the role of GCs in COVID-19, and its results emphasize 

the importance of timing of therapeutic interventions. It studied hospitalized patients at WHO stages 3, 4 

and 5ff treated with dexamethasone (6mg OD i.v./p.o.), for 10 days (n= 2104) to SOC (n=4321) and 

demonstrated a 28 day survival benefit in mechanically ventilated (29.3% vs 41.4%; HR 0.64 [0.51-0.81]) 

or O2 dependent patients at WHO stage 4/5 (23.3.% vs 26.3%; HR 0.82[0.71-0.94]); but no benefit in 

those without O2 requirement (17.8% vs 14.0%; HR 1.19 [0.91-1.55]) [208]. GCs were only beneficial if 

the symptom duration was longer than 7days.  

A metanalysis of seven studies (n=1703) [259] addressed GCs in COVID-19 patients with an at least  

moderate O2 requirement; most were ventilated. GCs decreased the 28 day mortality (HR 0.66 [0.52-

0.83], p<0.001), in those mechanically ventilated or on noninvasive ventilation (noninvasive O2: HR 0.41 

[0.19-0.88];  MV: HR 0.69 [0.55-0.86]), whereas patients requiring inotropes did not benefit (HR 0.55 

[0.34-0.88] vs 1.05 [0.65-1.69]; p=0.06). Another metanalysis of 7692 patients similarly identified a 

benefit of steroids, limited to patients requiring MV (RR 0.85 [0.72; 1.00, p=0.05][211]. In summary, data 

is consistent showing that steroids are beneficial at later disease stages, in patients requiring oxygen or 

MV (see below). 

3. IL-6 inhibition                  

Increased IL-6 expression by monocytic cells in COVID-19 [260] provides a rationale for the use of IL-6 

blockers (Sarilumab, Siltuximab, Tocilizumab (TCZ)). An IL-6 level of >30pg/mL at hospitalization 

indicated a future need for MV in a cohort of 146 patients [261].  
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Table 4 summarizes relevant studies on IL-6 inhibition in hospitalized patients specific to WHO stages at 

recruitment. The results indicate in most that risk of progression to MV is decreased when IL-6 inhibition 

is initiated at WHO stage 4 or 5. 

Recovery has been the largest trial investigating IL-6 inhibition [265]. It recruited hospitalized patients 

mainly at WHO stages 4, 5 and 6, most (82%) received concomitant GCs. In patients at stage WHO 4 and  

5, 28-day mortality (HR 0.81 [0.67-0.99]; HR 0.96 [0.74-1.00]), respectively and the risk of progression 

to MV was reduced (15% vs 19%; HR 0.79; 0.69-0.92; p=0.002). At WHO stage 6, a survival benefit was 

not as evident (HR 0.93 [0.74-1.18])[265] and overall was only present when GCs were given 

concomitantly (RR 0.79 [0.7-0.89] vs 1.16 [0.91-1.48]. 

A recent metanalysis of 27 trials including 10.930 patients at WHO stages 3, 4, 5, IL-6 blockade (TCZ 

n=18, sarilumab n=9) compared to placebo or SOC confirmed these findings. 28-day mortality (22% vs 

25%; OR 0.86 [0.79-0.95]) and risk of progression to MV were both reduced in the IL-6 inhibitor group. 

Again, the benefit was limited to a combination with GCs (OR 0.78 [0.69-0.88]). IL-6 blockade alone did 

not achieve a mortality reduction (OR 1.09 [0.91-1.30] )[266]. Another more recent metanalysis of 28 

cohort studies and 8 RCTs showed again that the risk for progression to MV was reduced (RR 0.84 [0.76-

0.93]) in WHO stages 4 and 5 and a survival benefit limited to those receiving concomitant GCs [267]. 

In summary, Tocilizumab is recommended in combination with steroids for recently hospitalized patients 

at WHO stage 4-5, with rapid disease progression or who require MV for less than 24 hours [268].  

A double-blinded RCT including 457 and 1365 patients randomized and treated in phases 2 and 3, 

respectively, assessed the use of sarilumab. Among the 20% of phase 3 patients receiving MV, a third of 

whom also received steroids, the proportion with ≥1-point improvement in clinical status at day 22 was 

43.2% for sarilumab and 35.5% for placebo (RRR 21.7%). In analyses combining phase 2 and 3 patients 

requiring MV, the mortality risk was reduced, though non-significantly (HR 0.76; [0.51 to 1.13]). Again 

patients receiving GCs concomitantly showed more pronounce risk reduction (OR 0.49 [0.25 to 0.94]). 

4. IL-1-inhibitors:  

IL-1-inhibitors in the form of the endogenous receptor antagonist IL-1ra (anakinra) or as monoclonal 

antibody against IL-1𝛽 (canakinumab) showed promise in cohort and observational studies [269-274] that 

triggered further investigations. Evidence remains controversial, but the timing of administration yet 

again seems crucial.  

A randomized trial [275] compared the addition of anakinra to SOC in patients at WHO stage 4ff. No 

difference was seen between the groups in mortality by 28 days (22% vs 24%, aHR 0.77 [0.33-1.77]), 

oxygen wean, or time to discharge.  

When patients requiring oxygen were randomized to receiving anakinra within ≤4days from admission, 

early treatment reduced 28-day mortality by 74% (aHR 0.26 [0.1-0.66], p<0.001) compared to SOC. No 

survival benefit was seen in patients not in the early treatment group who may have received anakinra as 

late rescue therapy (aHR 0.82, p=0.7). These results allow some attribution of benefit to use at earlier 

disease stages [276] and illustrate how critical the clinical status at the time of treatment allocation is. A 

recent metanalysis of IL-1 inhibition in COVID-19 could not proceed due to the data heterogeneity 

between studies [277]. A suPAR level of >6ng/mL heralds the development of respiratory failure in 

COVID-19 [278] and may assist biomarker-guided IL-1 inhibition [279].  

Two recent studies failed to demonstrate a benefit of IL-1 inhibition with canakinumab compared to SOC. 

Patients were included at WHO stages 4 and 5, and neither MV free survival nor risk of COVID-19 

related death differed significantly [280]. Additional reasons for the lack of canakinumab benefit in 

COVID-19 are likely based on the pharmacokinetic profile of this drug and its selective inhibition of IL-

1𝛽, leaving IL-1𝞪 unopposed [281].  

At present, pending further data collection, IL-1 inhibition is not recommended as SOC in COVID-19 

management. 
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5. Janus-kinase-inhibitors (JAK inhibitors)                
Many immune reactions responsible for the inflammatory response in COVID-19 (including IFN-1a,b) 

are transcriptionally regulated by the JAK-STAT pathway[282, 283]. A metanalysis [284] of five studies 

investigating JAK inhibition in COVID-19 demonstrated a significant reduction in mortality (HR 0.12 

[0.03-0.39]), and ICU admission (OR 0.05 [0.01-0.26]). Table 5. 

In two early studies in hospitalized patients, most of whom with an O2 requirement but not requiring MV, 

treatment with Baricitinib, an oral JAK1/JAK2 inhibitor, for seven days on LPV/r +/- HCQ background, 

demonstrated a faster reduction in O2 requirement and a lower mortality rate (1/20 (5%) vs 25/56 (45%) 

compared to SOC [285]. A follow-up study mainly included patients at WHO stages 3/4 [286]. Here, the 

need for intensive level care at 14 days was significantly reduced in the treatment group, and patients 

were more likely to be discharged by two weeks (77.8% vs 12.8%,  p<0.0001). 

TACTIC-R [289] is assessing the combination of baricitinib with ravulizumab (a C5 inhibitor) in WHO 

stages 3-5. Although treatment with ruxolitinib, an oral JAK1/2 inhibitor, was shown to be safe, it did not 

reduce mortality or progression to MV in patients at WHO stages 4 and 5 [290].  

In a recent study assessing tofacitinib in the treatment of hospitalized patients at WHO stages 3, 4 and 5 

(including high flow O2 only) [291], the cumulative incidence of death or respiratory failure through day 

28 was reduced by 37% (RR 0.63; [0.41 to 0.97] p=0.04).  All-cause mortality was observed in 2.8% of 

tofacitinib and 5.5% of placebo-treated patients, but the effect was not significant (HR 0.49; 95% CI, 0.15 

to 1.63). Serious adverse events were not significantly more common in the treatment group (14.1% vs 

12.0%). Potential safety concerns for JAKi include a rise in creatinine kinase, transaminases, and 

myelosuppression, which may increase the risk of opportunistic infections. The complete blood count 

should be monitored during treatment. 

 

6. TNF𝛂 inhibitors  (TNFi) 

Data on the use of TNFi in COVID-19 is limited. In a small study including seven patients, three of which 

were already mechanically ventilated, Infliximab at a dose of  5mg/kg iv on days one and three [292], 

resulted in a rapid decrease of pro-inflammatory cytokines and a clinical improvement in six of seven 

patients. In comparison, the mortality rate in the 17 control patients at a similar stage of hospitalization 

was 35%. The ACTIV trial (NCT04593940) recruits hospitalized patients with moderate to severe 

COVID-19 (WHO stage 4ff) and will, in addition to infliximab, assess abatacept and cenicriviroc, an 

inhibitor of chemokine receptors CCR2 and CCR5, for this indication. 

 

7. GM-CSF inhibition – or supplementation? 

GM-CSF, among other functions as  overall pro-inflammatory cytokine and growth factor, polarizes 

macrophages towards M1 and upregulates integrin expression by neutrophils, mediating their adhesion to 

and migration across endothelium. Higher serum levels of GM-CSF in ARDS correlate with a higher risk 

of death [293]. Antagonizing GM-CSF, therefore, appears to be an attractive target in COVID-19 [213]. 

The best time for GM-CSF inhibition, based on immunopathology, would be prior to the recruitment of 

peripheral monocytes. GM-CSF inhibition has an established safety record [294], but neutropenia, 

alveolar proteinosis, and impaired viral clearance remain concerns. In addition, lack of GM-CSF inhibits 

phagocytosis, efferocytosis by M2 macrophages and impairs the removal of NETs which may delay 

macrophage repolarization.  

Conversely, GM-CSF is critical for AM survival, surfactant removal, epithelial protection and the 

antiviral response. Higher GM-CSF levels in ARDS bronchoalveolar lavage fluid are associated with 

better outcomes [295-297], contrasting the association of higher serum levels with a worse prognosis 

[298, 299]. Despite initial concerns for excessive granulocyte mobilization and recruitment of neutrophils 

to the lung [295], first data assessing inhaled GM-CSF (sargramostim 125mcg, BD, for 5 days) in 

hypoxemic patients are encouraging [300].    
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Addition of sargramostim for five days to SOC in patients at WHO stages 4 and 5 was associated with a 

P(A-a)O2 improvement by ≥ 33% compared to SOC alone (54% vs 26%, p<0.001, NCT04326920). In a 

second cohort, including patients at WHO stage 4 and those requiring high flow oxygen but not NIV, 

oxygenation was also improved (treatment group 84%, SOC group 64% p=0.02)[301]. 

Amplifying pulmonary neutrophil recruitment might worsen the patient’s respiratory status. Under this 

premise, GM-CSF receptor blockade is also under investigation in COVID-19. Mavrilimumab (i.v. 

6mg/kg once) showed some promise in a small prospective cohort study from Italy in patients at WHO 

stages 4 and 5 [302].  

A double-blinded RCT recruited 40 patients in WHO stages 4 and 5 (n=21 receiving mavrilimumab) and 

found no significant difference in mortality or oxygen wean to placebo. However, mortality was high 

overall (43% and 53%, respectively) [303]. An ongoing study comparing mavrilimumab to placebo in 

hospitalized patients at WHO stages 4 and 5 reported in an interim analysis of n=166 that MV-free 

survival was higher in the treatment arm (86.7% vs 74.4%, p=0.1), equivalent to a 65% risk reduction, 

with final results outstanding [485]. 

8. Interventions targeting NETosis. Netosis is probably one of the most important yet underrecognized 

mechanisms in the pathophysiology of COVID -19. The release of Neutrophil Extracellular Traps, or 

NETosis, is a defense system utilized by neutrophils against bacteria, viruses or protozoa. During the 

formation of neutrophil extracellular traps (NETs), the neutrophil nuclear membrane is dissolved and 

NETs consisting of chromatin, citrullinated histones (CitH3), neutrophil elastase (NE) and oxidative 

enzymes such as myeloperoxidase are released into the extracellular space [304-306]. Excessive NETosis 

damages epithelial [307] and endothelial [308] cells. NET removal by two extracellular enzymes, DNase I 

and DNaseIL3, expressed by dendritic cells and macrophages, is critical for tissue homeostasis [309].  

NETs promote M1 persistence in COVID-19 and delay macrophage repolarization, which prevents the 

degradation of cellular debris by M2, facilitated by C1q [251]. As a result, efferocytosis, a hallmark 

feature of M2 cells, cannot occur effectively. Pro-inflammatory cytokines continue to be released, which 

prevents a timely switch to tissue-restorative repair processes [247, 248, 310]. NETs are also highly 

prothrombotic. They entrap erythrocytes and platelets and can form intravascular NET clots [309, 311]. 

Autopsies of COVID-19 victims show this, featuring thrombotic occlusion of pulmonary, cardiac, renal, 

and hepatic vasculature by aggregated NETs [312, 313].  

NETosis can be quantified by measuring specific biomarkers (cell-free DNA, myeloperoxidase [MPO]-

DNA, and citrullinated histone H3 [Cit-H3])[314]. These correlate closely with SOFA scores [315, 316] 

and may be useful for risk stratification at earlier disease stages. 

Dornase alfa is commonly used in inhaled form for patients with cystic fibrosis where it cleaves 

extracellular DNA, mainly from leukocytes, thereby decreasing the viscosity of respiratory secretions 

[317]. Beneficial effects on recovery in small case series in critically ill COVID-19 patients with ARDS 

have been published, additional trials are underway 
[318], [319], [320, 321]

. Other DNAse enzymes for the 

treatment of hospitalized patients with acute moderate to severe SARS-CoV-2 infection are currently in 

development.  

9. Heparin  
The ATTACC trial compared therapeutic-dose heparinization as an initial strategy in noncritically ill 

patients, most at WHO stage 4 with SOC thromboprophylaxis. There was a trend favoring therapeutic-

dose heparinization (survival to discharge: 76.4% vs 80.2%), exclusive to this earlier disease stage[225], 

but more data is required. 

10. 2-deoxy-2-Glucose: 

2-DG was granted EUA by the Indian authorities for moderate and severe COVID-19 when faced by the 

overwhelming pandemic impact on the Indian subcontinent[322]. 
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It inhibits glycolytic ATP production and is used to sensitize tumor tissue to chemo- and radiotherapeutic 

agents. 2-DG administration followed by low dose radiation was suggested as a means to reduce lung 

inflammation in COVID-19 [323]. The agent accumulates in metabolically active, virus-infected cells and 

results in their apoptosis. Phase 3 trials recruited patients at WHO stage 4ff, without adding radiation. 

Early oxygen wean was more frequently possible (42% vs 31%), but more evidence to support this 

treatment is needed, and detailed data on safety is lacking.  

 

 

 

6. WHO 9 point Scale, Patient Stage 5:  Noninvasive ventilation or high flow oxygen 

Driven by inflammatory cell recruitment and barrier dysfunction, patients at this stage have progressed to 

severe pneumonia, and their gas exchange is more severely affected. They require high flow oxygen, and 

approximately one fifth will require noninvasive pressure support [324].  

The three main immunologic mechanisms during this stage include: 

1. Disruption of endothelial and epithelial integrity 

Worsening capillary leakage and alveolar edema now contribute to poor gas exchange [325, 326].  

The main determinants of endothelial and epithelial permeability are the VEGF and Ang/Tie2 systems. 

The primary stimulant of VEGF production by AECs is IL-1𝛽  [327-329]. Under normal physiologic 

conditions, pulmonary VEGF levels of capillary and alveolar lumens are strictly compartmentalized 

[330]. During an infection with SARS-CoV-2 this compartmentalization is lost, resulting in worsening 

epithelial damage [331] and release of alveolar-side VEGF into the bloodstream across the damaged 

barrier [332]. This promotes endothelial Angpt-2 release [331], amplifying capillary leakage [333]. 

Therefore, an increase of VEGF in the alveolus (as detectable in bronchoalveolar lavage fluid) indicates 

improved barrier function and predicts recovery from ARDS [334] while increasing plasma levels are 

associated with worsening pulmonary edema [335, 336].  

Angpt-1 is the main agonist of the endothelial Tie2 receptor [337, 338]. Their interaction seals endothelial 

tight junctions and protects against capillary leakage [339-345]. It opposes Angpt-2 action on Tie2 [342, 

346], which increases capillary permeability [342, 347, 348] and leads to epithelial apoptosis [325, 346, 

349-353].  

Increased Angpt-2 and low VEGF2R levels in plasma predict ARDS severity and 28d mortality [336]. In 

mechanically ventilated patients, serum Angpt-2 correlates with the severity of pulmonary vascular 

leakage and predicts the likelihood of ICU admission, development of ARDS and resulting fatality in 

COVID-19 [252, 354-360]. A low Angpt-1/Angpt-2 ratio is a marker for endothelial dysfunction and a 

consistent feature of adverse outcomes in sepsis, DIC and ARDS [361-369].  

Take home messages for this disease stage: 

1. Data strongly support the use of GCs at this stage. Careful monitoring for secondary infections in 

these patients is critical. 

2. JAK-inhibitors offer a benefit in terms of preventing progression to MV and survival  

3. IL-6 inhibition, in combination with GCs, is recommended at this and later disease stages  

4. While results from larger trials with IL-1 inhibitors are lacking, data available from observational 

cohorts suggests that they may have a benefit on clinical outcome and survival in this but not 

later disease stages. 

5. The administration of GM-CSF antibodies can currently not be recommended while the use of 

inhaled GM-CSF may be of benefit at this and later stages 

6. Enzymatic therapy with DNAse 1 or recombinant DNAse1L3 to counteract Netosis may play an 

important role in preventing progression of COVID-19 in this disease stage. However, data of 

clinical trials are still pending. 
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2. Neutrophil Recruitment and Amplification of Inflammation  

Much of COVID-19-associated inflammatory pulmonary damage is mediated by M1 macrophages and 

the neutrophils they recruit [55, 370-372]. Neutrophilia, especially in the BAL fluid, is a consistent 

feature of severe COVID-19 and predicts mortality [28, 190, 202, 253, 255, 373-375]. Autopsies of 

COVID-19 patients have demonstrated the accumulation of neutrophils and M1 macrophages associated 

with microangiopathic and thrombotic changes in pulmonary capillaries [376-378]. Especially in patients 

who require respiratory support, the neutrophil population contains immature, lower density granulocytes 

(LDGs) [256]. LDGs are ineffective phagocytes [256, 312, 379-382], produce large amounts of pro-

inflammatory cytokines (IL17, IFN-I) and have a propensity to form NETs [383, 384]. 

CXCL5 concentration in BAL fluid correlates with the extent of neutrophil infiltration of lung 

parenchyma [385, 386]. 

The damaged alveolar epithelium, in turn, activates the endothelium, which upregulates adhesion 

molecules [387-389], and mechanically entraps primed neutrophils [390-392]. This close interaction with 

the activated endothelium activates the neutrophils, which causes them to release inflammatory mediators, 

form NETs [312, 390] and enter the alveolus [371].  

In summary, neutrophils home to the COVID-19 lung, interact with the damaged endothelium and 

contribute to tissue damage. Because of NETosis-induced impairment of macrophage repolarization, 

efferocytosis is defective. Accumulating NETs may not be adequately removed and sustain inflammation 

and neutrophil recruitment, further exacerbating inflammatory tissue injury.  

3. Immune thrombosis 

Thromboembolism complicates up to a third of COVID-19 admissions to ICU [393-397]. Generalized 

endothelial damage and thrombotic microvascular injury of lungs, kidneys, liver and heart and frequent 

pulmonary embolism [396] and stroke [398], characterize severe disease.  

Evidence for endothelial dysfunction is present as early as WHO stage 3. Levels of FVIII, vWF:Ag, D-

Dimers at the time of hospitalization correlate with risk of thromboembolic complications and mortality 

in COVID-19 patients [182, 399, 400].  

Not all markers of endothelial damage have equal prognostic value, and more data are required in this 

area. Thrombomodulin, selectin, Angpt-2 and CEC levels were all significantly elevated in patients with 

more severe COVID-19, but in a comparative analysis, only vWF antigen discriminated disease severity 

of outpatients, non-critical (WHO stage 3,4,5) and critical (WHO stages 5,6,7) COVID-19 [401, 402]. 

Other selected markers of endothelial damage may predict inpatient mortality (glycocalyx damage (AUC 

0.74), ADAMSTS13 (AUC 0.75) and VEGFA (AUC 0.73)), but will not be readily accessible to most 

clinicians [403]. 

4. Complement activation 

The complement system has antiviral properties [404] but can also result in tissue injury through 

activation of Netosis and pro-coagulant effects. The pivotal role of complement activation in COVID-19 

was identified early [405]. Histopathology of skin, kidney and lung biopsies from COVID-19 patients 

(n=5) showed extensive deposition of C5b-9 in the microvasculature [406]. Complement pathways are 

highly induced in the COVID-19 lung, which correlate with disease severity [407-409].  

 

Based on published evidence about this disease stage,  therapeutic recommendations include:  

 

1. Antiviral therapy: remains indicated as discussed above 

2. Steroids: remains indicated as discussed above 

3. Heparin: remains indicated as discussed above 

4. Cytokine inhibitors: As discussed above, IL-6 inhibition can be expected to be of benefit. The data for 

IL-1 inhibition is less clear but on balance would favor earlier use (WHO stage 4)  
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5. JAK inhibitors: Based on the ACTT-2 and COV-barrier results, JAK inhibition has most impact at this 

stage. 

ACTT-2, a double-blinded, placebo-controlled RCT enrolled over 1,000 inpatients at WHO stage 4ff to 

assess efficacy and safety of baricitinib 4mg OD for 14 days in addition to RDV versus RDV alone. 

Patients receiving GCs were excluded. Baricitinib addition made progression to MV or death less likely 

(HR 0.69; [0.5-0.95]). Patients on high flow O2 or NIV (WHO stage 5) benefitted most. Here, time to 

clinical recovery was shortened from 18 to 10 days and clinical improvement by two weeks was twice as 

likely (OR 2.2 [1.4-3.6]). In patients at WHO stage 3, 4 or 6 however, baricitinib did not impact time to 

recovery. Secondary infections were less frequent in the treatment arm [287].                   

The COV-barrier trial [484], a recently published double-blinded, placebo-controlled phase 3 RCT 

assessed baricitinib in addition to SOC among hospitalized COVID-19 patients, over 90% of who also 

received GCs. Overall 28-day mortality in the treatment group was significantly reduced (8% vs 13%, HR 

0·57 [95% CI 0·41–0·78], p=0.002), and clinical improvement at day 4 through 14 was more likely. 

Patient at WHO stage 5 (NIV or high flow O2) again benefited most (28-day mortality HR 0·52 (95% CI 

0·33–0·80); p=0·006). The baricitinib benefit was maintained in those who did not receive concomitant 

GCs or RDV, and persisted when mortality risk was re-analyzed at 60 days (HR 0.62 [0.47-0.83] 

p=0.005). 

In summary, baricitinib appears to have its most significant benefit at WHO stage 5. It is currently 

recommended in combination with remdesivir only which, given recent evidence, may be revised [288]. 

6. Angiopoietin 2 inhibitors, VEGF inhibitors 
Vanucizumab, a bispecific monoclonal antibody directed against Angpt-2 and VEGF, usually used as an 

angiogenesis inhibitor in solid tumors [410], is currently undergoing trials in COVID-19.  

Similarly, inhibition of VEGF as the main factor stimulating Angpt-2 release may be of value, especially 

as it enters the circulation in severe lung injury. Bevacizumab, a monoclonal VEGF-A antibody, has now 

been repurposed for use in COVID 19 (NCT04275414; NCT04305106) in patients meeting ARDS 

criteria.  

In a study of 26 patients, treatment with i.v. bevacizumab resulted in improved PaO2/FiO2 within 24h 

and rapid normalization of inflammatory markers [411]. However, the clinical status of the cohort was 

very diverse, complicating the interpretation of these findings. A case series in COVID-19 patients 

requiring ICU level care [412] included n=25 receiving bevacizumab, and n=21 receiving a combination 

of TCZ/ bevacizumab. 23/25 (93%) of bevacizumab treated individuals recovered to discharge, as did 

14/21 patients receiving a combination treatment. Dosing and WHO stages of the patients were not 

reported, and more research is required before an assessment of its benefit can be made. 

7. Tie-2 mimetics: Vasculotide, a Tie2 mimetic improved survival in animal models of viral pneumonia 

and ARDS and reduced pulmonary edema and endothelial apoptosis [413-415]. Clinical trials 

investigating AV-001/Vasculotide and similar products in human ARDS and COVID-19 are planned .  

8. Complement inhibition: Monoclonal antibodies targeting specific complement factors, eculizumab 

and ravulizumab inhibiting C5, or AMY-101 inhibiting C3, are currently undergoing assessment in 

COVID-19 studies. So far, available data is limited to uncontrolled smaller case series. 

At WHO stage 5ff (>6L/min O2 requirement, severe pneumonia, or ARDS), eculizumab 900 mg on D1, 

8, 15, and 22 in addition to SOC was associated with lower 28-day mortality (7/35 (20%) vs 23/45 (51%), 

p=0.005), and respiratory support could be weaned faster [416]. A trial assessing ravulizumab in 122 

patients with severe COVID-19 (WHO stage 6ff) was halted after interim analysis did not support 

efficacy [419]. Assessment of patients not yet requiring MV (WHO stage 5) is being evaluated.  

Selective C5a inhibition in severe COVID-19 has been investigated by Vlaar and colleagues[420]. C5a is 

a strong chemoattractant of neutrophils, leads to endothelial activation and is central to neutrophil tissue-

factor dependent pro-coagulant activity [421, 422]. Administration of seven i.v. doses of C5a inhibitor 

vilobelimab in 15 patients with severe COVID-19, mainly at WHO stages 5 and 6 did not impact early 
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oxygen wean or mortality compared to SOC (aHR 0·65 [95% CI 0·10–4·14]). Thromboembolic 

complications though were less frequent (2/15 vs 6/15). Given these initial results, vilobelimab is 

undergoing further assessment in severe COVID-19 (NCT04333420). In summary, despite some studies 

showing rapid decline of inflammatory markers, sufficient evidence supporting the use of complement 

inhibitors outside of clinical trials is lacking [416-418] 

9. Statins: Statins inhibit MyD88, upstream of NF𝛋B, and have several anti-inflammatory and 

immunomodulatory effects. Earlier metadata suggests a risk reduction of 30% for progression to severe 

COVID-19 or death with the use of statins [423]. A more recent metanalysis including seven retrospective 

cohort studies (2398 patients) found that COVID-19 patients taking statins had nearly 40% lower odds of 

progressing to the composite endpoint of severe/critical illness or death (OR: 0.59; [ 0.35–0.99]). This 

was even more pronounced in patients taking statins pre-admission (OR 0.51 [0.41-0.64]). The addition 

of simvastatin to SOC in patients with ARDS due to a variety of pathologies showed that only those with 

a hyperinflammatory phenotype, defined by IL-6 and sTNFr1 levels, benefited from statins. In this 

subgroup, the improvement achieved in 28 day mortality and ventilator- resp. organ support- free survival 

was significant [424]. While this does not address whether or not adding statins acutely would be of 

benefit, these findings may be relevant to future research on COVID-19 related ARDS. 

10. Imatinib is a Bcr-Abl tyrosine kinase inhibitor and approved chemotherapeutic agent for Philadelphia 

chromosome positive CML and ALL. Experimental and early clinical evidence suggests that imatinib 

protects the integrity of the vascular barrier [425, 426]. It has been studied in severe COVID-19 with the 

rational of mitigating damage to the barrier of the alveolo-capillary unit. In a double-blinded placebo-

controlled RCT [427], 400 patients at WHO stages 4ff were assigned to either placebo or imatinib at a 

loading dose of 800mg followed by 400mg OD for nine days. Three-quarters of participants received 

concomitant GCs, a fifth RDV; no other immunomodulatory agents were used. Time to discontinuation of 

MV or oxygen wean did not differ, while time spent on MV was shorter (survivors 7 vs 12 days, p=0.02) 

and 28-day survival improved (mortality risk aHR 0·52 [0·26–1·05]; p=0·068).  

 

 

7. WHO 9 point Scale, Patient Stage 6 – Intubation and Mechanical Ventilation 

At this stage, patients progress from requiring high flow oxygen to intubation and MV. The clinical 

deterioration at this stage is a direct consequence of the inflammatory and immunologic mechanisms 

initiated at stages 3 and 4 that are now leading to respiratory failure.  

In over 10,000 hospitalized COVID-19 patients from Germany, mortality was 53% among those who 

progressed to MV, compared to 16% who did not [324, 428].  

Autopsy results in mechanically ventilated patients who had rapidly progressed to severe respiratory 

failure demonstrated neutrophilic invasion of the alveolar spaces and microvasculature, epithelial injury 

and microthrombi, likely related to excessive neutrophil recruitment to the lung [244]. 

 

Take home messages for this disease stage: 
1. Risk stratification based on clinical findings and biomarkers  is critical  

2. Currently available data strongly support the use of GCs in patients at this disease stage.  

3. Heparin: remains indicated as discussed above  

4. JAK inhibitors remain indicated as discussed above 

5. Although data remain limited, monoclonal antibody directed against Angpt-2 and VEGF may 

play an a role in preventing the progression to MV in this disease stage  

6. IL-6 inhibitors are recommended under certain conditions at this stage  

7. Data is not sufficient to recommend the use of complement inhibitors or imatinib at this disease 

stage,  but new data on a potential role for these agents is emerging  
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Based on published evidence about this disease stage, therapeutic recommendations include:  

 

1.  Steroids are beneficial in COVID-19 patients requiring MV (see under WHO stage 4). 

2.  Antibiotic and Antifungal treatment:              

Prolonged immunosuppression in the critically ill must be navigated with caution. Secondary bacterial 

and fungal superinfections frequently complicate severe COVID-19, and patients must be closely 

monitored. Increasingly, COVID-19 associated invasive mycoses are being recognized, due to profound 

lymphopenia, prolonged significant illness, and immunosuppressive therapies [429].  

3. Heparin             
There is a high incidence of isolated pulmonary artery thrombi in critically ill COVID-19 patients 

suggesting the possibility that some thrombotic events in these patients are formed in situ rather than 

representing dislodged emboli [430]. While thromboembolism is very common in COVID-19, 

heparinization does not completely abolish this risk [431-433], and thromboembolic events despite 

prophylactic, and even therapeutic heparinization occur. 

Biomarkers of NETosis such as cell-free DNA are significantly elevated in patients at WHO stage 5. 

Many factors contribute to the prothrombotic state in severe COVID-19, with NET formation and 

antiphospholipid antibodies emerging as important contributors [312]. Lastly, heparin resistance is not 

uncommon in severe COVID-19 [434], and alternative strategies for anticoagulation may have to be 

pursued, such as direct thrombin inhibition with argatroban [435]. 

There was early recognition that anticoagulation should be administered in COVID-19 patients, but 

heparin dosing has been controversial [436, 437](Table 6). The International Society on Thrombosis and 

Haemostasis (ISTH) suggests risk stratification with dose escalation to intermediate (50% increase of 

prophylactic dose) for those with a BMI ≥30 or very high D-Dimers (≥3000) and discourages the use of 

therapeutic doses for primary prevention [223]. The ATTACC/ACTIV-4a/REMAP-CAP trial[438], 

where therapeutic anticoagulation was inferior to usual care thromboprophylaxis in the outcome of 

organ-support free survival, with a higher incidence of major bleeding complications, lends support to this 

approach. This sets critically ill COVID-19 patients apart from those with moderate illness (WHO stages 

3,4,5) in whom therapeutic heparinization was not inferior (see above).  

4. Aspirin (ASA)   
ASA has a favorable anti-inflammatory effect on the neutrophil-platelet-endothelial interaction which 

results in microthrombi, VQ mismatch and NETosis.  

The data on treatment with ASA in non-COVID-19 ARDS in at-risk individuals is controversial [439, 

440]. One study even showed an association with an increased risk of MI, VTE and stroke [440]. 

5. IL-6 Inhibitors   

In addition to the use of IL-6 inhibitors as discussed under WHO stage 4, siltuximab (in one to two doses) 

was used in a small cohort study including 30 patients on either NIV support or MV matched to patients 

receiving SOC [441]. The majority received concomitant GCs (18/30). The 30-day mortality rate was 

significantly lower in the treatment group (HR 0·46, 95% CI 0·22– 0·97); p=0·04). Though not all 

patients had completed the follow-up period, 16/30 were discharged, four remained on mechanical 

ventilation, and ten patients died. This contrasts the findings of the much larger Recovery trial on TCZ, 

and evidence on siltuximab will have to be revisited as more information becomes available.  

6. IL-1 Inhibitors 

In a cohort study comparing TCZ, Sarilumab and anakinra in patients at stages 5 and 6, IL-1 and IL-6 

inhibition improved long-term (180 days) survival when initiated before the establishment of severe 

ARDS (PaO2/FiO2 < 100 mmHg). Notably, in this cohort that did not co-medicate patients with GCs, all 

three agents offered a survival benefit in patients requiring MV (180-day mortality risk. Anakinra HR 

0.47 [0.26-0.87], sarilumab HR 0.55 [0.25-1.22], TCZ HR 0.57 [0.28-1.14]). In patients with severe 
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ARDS, the survival advantage offered by sarilumab and tocilizumab was lost (TCZ HR 1.02 [0.37-2.81], 

sarilumab HR 0.69 [0.25-1.75]), and while the efficacy of anakinra was reduced, it was still superior to  

SOC (HR 0.46 [0.22-0.94])[442].  

 

 
 

8.    WHO 9 point Scale, Patient Stage 7 – Ventilation and additional organ support 
 

Stages 6 and 7 are pathophysiologically similar and characterized by gradual deterioration of widespread 

endothelial damage [443]. Approximately 33% of hospitalized patients may progress to COVID-19 

associated ARDS [444].  

Acute respiratory distress syndrome (ARDS) is the result of dysregulated inflammation in response to a 

pulmonary or systemic insult that impacts the endothelial and epithelial integrity of the alveolocapillary 

unit [445]. Clinical data suggest ARDS endotypes with distinct clinical features and disparate outcomes 

[445, 446]. The clinical course of ARDS is described as occurring in two stages [361, 447]: 

a. an inflammatory exudative phase characterized by alveolar-epithelial damage, recruitment of 

inflammatory cells with subsequent alveolar flooding with proteinaceous fluid, formation of 

hyaline membranes, and resultant hypoxemic respiratory failure (week 1-2) 

b. a fibroproliferative phase characterized by lung fibrosis and vascular remodeling (week 2-3ff) 

The Berlin ARDS criteria define an international diagnostic standard [447, 448].  

 

COVID-19 associated ARDS, as evidenced by autopsy studies, is consistently characterized by 

 extensively affected microcirculation, alveoli infiltrated with neutrophils and/or 

monocytes/macrophages 

 peripheral neutrophilia and decrease of most lymphocyte subsets (i.e., a high NLR), correlating with 

poor outcome, higher sequential organ failure assessment (SOFA) scores and death [28, 190, 202, 

253, 255, 373, 374]. 

 a highly inflammatory pulmonary response, often in combination with ongoing viral RNA presence 

 extensive diffuse alveolar damage  

 widespread endothelial damage and thromboembolic events  

The pandemic has put a spotlight on the fact that despite therapeutic advances, the overall mortality of 

ARDS remains unacceptably high[36]. Therefore, the most critical strategy in COVID-19 management is 

addressing the evolving inflammation-mediated tissue damage early. Ventilatory strategies, fluid balance 

and positioning are the most important points and foundations of ARDS management once it occurs but 

are well beyond the scope of this review. Pharmacologically, in addition to steroid administration, the 

therapeutic focus shifts to addressing the epithelial and endothelial barrier dysfunction – especially if the 

Angpt2/1 ratio or circulating VEGFR2 levels remain elevated. The patient’s prognosis may be reflected in 

Take home messages for this disease stage: 

1. The use of GCs in patients with COVID-19 has been found to be most beneficial for patients in 

this disease stage. Careful monitoring for secondary infections in these patients is critical 

2. Starting antiviral therapy in this disease stage is no longer recommended 

3. Heparin at prophylactic dose remains indicated. A proposed risk stratification guiding heparin 

dosing is discussed above. The additional use of ASA and NSAIDs cannot be recommended 

4. The use of IL-6 inhibitors may be beneficial 

5. Drugs targeting Netosis might be critical in this disease stage but data from clinical trials are still 

pending. 

6. Despite limited data the use of complement inhibitors for this stage cannot be recommended  
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NLR, coagulation parameters, D-Dimers, von Willebrand factors, Troponin, BNP, renal and liver 

function, CECs (circulating endothelial cells), and NETosis markers such as cell free DNA (see above). 

 

Based on published evidence about this disease stage, therapeutic recommendations include:  

Treatment recommendations in this disease stage are essentially identical to those for WHO stage 6. 

1. Steroids are of benefit in COVID-19 patients who are mechanically ventilated  

2.   Antibiotic and Antifungal treatment: Prolonged immunosuppression in the critically ill will have to 

be navigated with caution. Secondary bacterial and fungal superinfections frequently complicate severe 

COVID-19. Patients must be closely monitored for secondary infections. Increasingly, COVID-19 

associated aspergillosis (CAPA) is being recognized, resulting from profound lymphopenia, and as a 

complication of immunosuppressive therapies [449]. 

2. Statins: as discussed at WHO stage 5 

3. Mesenchymal stem cells (MSC): 

The use of MSC in severe ARDS is experimental and only included here for completeness and to 

introduce this novel treatment concept. It is a common misperception that MSCs in ARDS replace 

damaged alveolar cells. In fact, the proposed clinical benefit is ascribed to their immunomodulatory 

properties, skewing macrophages to M2, and exerting an antifibrotic effect. Available data is minimal. 

The COVID-19 Treatment Guidelines Panel of the NIH recommends against the use of mesenchymal 

stem cells for the treatment of COVID-19 outside of clinical trials. 

 

 
 

9.  Summary 

Therapeutic options for patients with COVID-19 are rapidly evolving, and knowledge gained from 

currently ongoing clinical trials may change future treatment recommendations. We believe that sound 

treatment decisions are based on a thorough understanding of the immunopathology of COVID-19. This 

understanding will enable clinicians to develop a well-defined treatment strategy based on clinical risk 

scores, immune cell profiling, disease-stage specific biomarkers, laboratory and imaging findings. 

We recognize that during disease progression, pathological processes overlap, influence each other, and 

new ones may emerge. Especially at earlier disease stages, treatment target the prevention of a 

dysregulated hyperinflammatory state. We believe this occurs at the latest at WHO stage 4 in 

predisposed individuals. Once patients require mechanical ventilation, treatment becomes increasingly 

challenging with fewer effective treatment options and a higher risk of adverse outcomes. Consequently, 

a disease-stage specific treatment selection should not be made empirically but follow published 

evidence from the literature as summarized above.  

 

Take home messages for this disease stage: 

1. Ventilatory strategies, fluid balance and positioning, are the most important points and 

foundations of ARDS management  

2. The use of GCs are of benefit at this disease stage.  

3. Due to prolonged immunosuppression and the critical condition of patients in this disease stage, 

active surveillance for secondary infections and  antibiotic and antifungal treatment play an 

important role 

4. Heparin remains indicated at prophylactic dose, with some data indicating that therapeutic 

dosing may inflict harm 

5. The initiation of antiviral therapy in this disease stage is no longer recommended  

6. The use of MSC in this disease stage is experimental and evidence insufficient to recommend it 
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Table 1. Relevant trials assessing convalescent Plasma (CP) in COVID-19 (selection) 

Study Design, n WHO stage of included 

patients, administered dose 

outcomes  

Li [450] RCT, n=103 4-13 mL/kg, variable titers 

Severe COVID (23/22),             

life threatening COVID 

(29/29) 

Time to improvement at28d 

by 2OSP: overall 

Severe COVID  

Life threatening COVID-19 

28D mortality 

HR 1.4 (0.79-2.49) 

HR 2.15 (1.07-4.32) 

HR 0.88 (0.3-2.63) 

HR 0.59 (0.22-1.59) 

No effect on time to improvement 

or mortality, possible  

signal for clinical benefit in severe 

but not life threatening COVID-19 

Agarwal[451] PLACID, RCT open label 

n=464 

moderate COVID-19 

(SaO2≤93% in RA, 

PaO2/FiO2 200-300) 

Progression to severe 

COVID (PaO2/FiO2 ≤100) 

28D mortality 

HR 1.04 (0.54-1.98) 

HR 1.04 (0.66-1.63) 

No effect on mortality or disease 

progression 

Gharbharan 

[167] 

ConCOVID, n=86, RCT Hospitalized, not MV≥4d, 

but otherwise not well 

defined 

 

Mortality 

Clinical improvement D15 

79% of patients had antibodies at 

baseline 

HR 0.95 (0.2-4.7) 

HR 1.3 (0.52-3.32) 

Abolghasemi 

[452] 

open label RCT, N=189 Mod. COVID-19 (stages 

4,5), hospitalized for ≤3d, 

O2 requirement, not 

intubated 

28D mortality 

Progression to MV 

14.8% vs 24.3% , p=0.09 

7% vs 20.3%, p=0.006 

Simonovich 

[453] 

 PlasmAR, RCT, n=333  Hospitalized, with  O2 

requirement (any). Almost 

all received steroids 

30D mortality 

Improvement on ordinal 

scale D14 

HR 0.83 (0.52-1.46) 

HR 1.00 (0.65-1.55) 

No significant benefit in severe 

COVID 

Joyner [454] Observational, n=35.322 Hospitalized, 

ICU:  52.3%  

MV:  27.5% 

7D mortality pts who 

received high-titer CP, no 

MV 

7D mortality in pts treated 

with CP within 3d, no MV 

7D mortality in those treated 

< vs ≥3d after diagnosis 

30D mortality in those 

14% vs 11%, p=0.03 

6.3% vs 11.3%, p=0.0008 

8.7% (8.3-9.2%) vs 11.9% (11.4-

12.2%), p≤0.001 

21.6% vs 26.7% , p≤0.001 
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Table. 2  Clinical Risk Score in hospitalized patients with COVID-19 

 Symptom/marker on OR disease progression to ICU OR death 

treated < vs ≥3d after 

diagnosis 

 

Joyner [455] retrospective, n=3082  WHO stage 4,5,6,7 30D mortality (high titer CP) 

30D mortality (high titer 

CP), not MV 

30D mortality (high titer CP) 

MV 

(low titer and/or already on 

MV – no benefit. Data not 

shown) 

HR 0.75 (0.61-0.93) 

HR 0.64 (0.46-0.88) 

HR 0.93 (0.73-1.19) 

Chai [456] Cochrane review, 19 

observational studies and 

RCTs 

N=38.160 patients (36.081 

received CP) 

 

RCTs: n=189 (95 received 

CP) 

Mortality 

Improvement of clinical 

symptoms at D7 

Improvement of clinical 

symptoms at D15 

Improvement of clinical 

symptoms at D30 

HR 0.64 (0.33-1.25) 

RR 0.98 (0.3-3.19) 

RR 1.34 9 0.85-2.11) 

RR 1.13 (0.88-1.43) 

Recovery  RCT, open label, n=10406 Not released, pre-

publication communication 

to investigators 

28D mortality HR 1.04 (0.95-1.14)  
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admission or critical illness 

Liang [177]   

 

 

AUC 0.88 

Chest x-ray abnormal 3.39  

Hemoptysis 4.53  

Dyspnea 1.88  

Level of consciousness 4.71  

History of malignancy 4.07  

NLR raised 1.06  

LDH raised 1.02  

Bilirubin raised 1.15  

Number of comorbidities 1.60  

Ciceri [457] 

 

 

>65 years of age  3.17 

History of  coronary disease  2.93 

Lymphocytes  <0.9x10^9  1.83 

Higher RALE score  1.05 

LDH above median  2.95 

D-Dimer above median  2.54 

Stefanini [458] 

 

AUC 0.88 

hsTroponin  1.32 

Lymphocytes  0.52 

Age  1.1 

O2 requirement  2.55 

Tachypnoea >20/min  1.84 

Tachycardia >100/min  0.36 

Fever  2.12 

GFR <60mL/min x1.73m
2
  2.19 

Malignancy  2.38 

D-Dimer  1.51 

                                   

AUC 0.92 

Age  1.13 

GFR<60mL/minx1.73m
2
  2.66 

hsTroponin AND BNP  3.24 

D-Dimer  1.00 

Lymphocyte  0.19 

SaO2 desaturation  2.07 

Masetti [459] Age >75years  10.6 

Thrombocytopenia <150x10
9
/L  3.64 
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Ferritin >750ng/mL  3.33 

Henry [183], 

(metanalysis) 

Lymphopenia 4.2 3.7 

Neutrophilia 7.99 7.87 

Lymphopenia <0.5 x10
9
/L  12.0 

Hao [179] 

 

Hospitalization 

SpO2 5.67  

Fever 2.36  

Age 2.4  

Tachycardia 2  

Diastolic BP  4.51  

Dyspnoea 7.41  

Chronic kidney disease 2.25  

ICU Chest x-ray opacity 4.08  

Tachypnoea 1.66  

Age 1.76  

Fever 1.83  

Male 1.65  

Hypoalbuminemia 1.78  

SpO2 2.29  

LDH 2.62  

Ca
2+

 1.73  

Mechanical 

ventilaion 

CRP 1.53  

LDH 6.47  

Ca
2+

 1.79  

Feng [460]  Age 1.06  

NLR 1.74  

CT severity score 1.19  

Jain [461] Progression to severe disease Dyspnea  3.7  

Progression to ITU Dyspnea   6.5  

Li [188] hsTrop, CK, LDH See text  

Caricchio [178] Six criteria predicting cytokine 

storm, see text 

Predicted cytokine storm/ use of cytokine blockade 

 

Table 3.: Studies assessing interferon for use in COVID-19 (selection) 
Study DESIGN, N WHO STAGE OF INCLUDED OUTCOMES  
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PATIENTS, ADMINISTERED 

DOSE 

Solidarity [462] RCT, open 

label, n=2050 
INF𝛽1a 3x 0.44mcg s/c or iv 

for 1week. WHO stages 3-6 

In air n=482/490 

O2 req. n=1429/1430 

Ventilated n=139/130 

28 day mortality 

MV 

No MV 

HR 1.16 (0.96-1.39) 

HR 1.4 (0.82-2.4) 

HR 1.1 (0.84-1.45) 

Rhamani [219] RCT, open 

label, n=80 

(33/33) 

INF𝛽1b 250 mcg s/c for 2 

weeks, combined with LPV/r/ 

ATV/r and HCQ.  

WHO stage 4 (6% IFN group), 

5 (75% IFN group), 6ff (18% 

IFN group) 

Time to clinical improvement 

Discharge D14 

ICU admission 

28D mortality 

9(6-10) vs 11 (9-15), HR 2.30, p=0.002 

78.8% vs 54.6%, OR 3.09, p=0.03 

14 (66.7%) vs22 (42.4%), p=0.04 

2 (6%) vs 6 (18.2%), p=0.12 

 

Davoudi-

Monfared [463] 

RCT, n=92 

(46/46) 
IFN𝛽1a 0.44mcg s/c, 3x weekly 

for 2 weeks. combined with 

LPV/r, HCQ, GCs.  SaO2≤90%, 

median symptom duration 10d 

D28 discharge 

D28 overall mortality 

Progression to MV 

Mortality early IFN (<10d) 

Mortality late IFN (>10d) 

31 (73.8%) vs 23(58.9%), OR 1.96(0.8-5) 

8 (19%) vs 15 (43.6%), p=0.015 

35% vs 44%, p=0.33 

OR, 13.5;95%CI 1.5-118) 

OR, 2.1; 95%CI 0.48-9.6 

Estebanez [464] Observational 

retrospective. 

N=256 

(106/150) 

IFN𝛽1b at 250mcg s/c  for 1-2 

weeks on alternate days, 

combined LPV/r, HCQ, or 

TCZ, GCs. (mild 46%, 

moderate 36%, severe 18%) 

median symptom duration 7d 

Mortality 20.8% vs 27.3% p=0.229 

Hung [465] RCT open 

label,  n= 127 

(86/41) 

IFN𝛽1b s/c 8mio IU for 1-3 

doses. Combined with LPV/r, 

ribavirin. Most WHO stage 3  

Time to SARS-CoV-2 PCR neg 

Clinical improvement  

Length of hospitalization 

7d vs 12d (RR 4.37 (1.86-10.24) p=0.001 

4d (3-8) vs 8d (7-9), p<0.0001 

9d vs 14.5d 

 

Wang [220] Retrospective, 

observational 
IFN𝛼2b,  

Early= within 5d (48%) 

Late= after 5d (5.8%) 

No IFN (45.7%).  

Most WHO stage 3,4,5 

In-hospital mortality 

Early IFN vs no IFN 

Late IFN vs no IFN 

Age >60y  

Early (0.9%), late (15.4%), non (4.9%) 

aHR mortality 0.05 (0.01-0.37), p=0.004 

aHR mortality 6.82 (1.14-40.8), p=0.005 

HR mortality 6.87 (p≤0.001) – treatment 

independent. 

Pereda [466] Observational 

N=814 
IFN𝛼2b 3x per week for 2 

weeks, i.m.  

Note: 75% of control group but 

5.5% of treatment group on ICU 
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 Majority combined with LPV/r, 

HCQ 

at inclusion 

Discharge 

Fatality rate overall 

Fatality rate for severe disease 

 

145 (95.4%) vs 6(26.1%) 

7 (0.9%) vs 17 (32.1%) 

7 (21.9%) vs 17 (48.5%) 

Monk [222] Blinded, 

placebo 

controlled 

RCT, n=101 

(50/51) 

Nebulized IFN𝛽1a 6mio IU 

once daily for 14d,  

WHO stage 3, 4,5,  

median symptom duration 10d 

(7-11d) 

Recovery D15 

Recovery D28 

Discharge D15 

Discharge D28 

Improvement D15 

Improvement D28 

Progression to ICU/severe disease 

OR 3.19 (1.24-8.24) 

OR 3.58 (1.41-9.04) 

OR 1.63 (0.61-4.35) 

OR 1.84 (0.64-5.29) 

OR 2.32 (1.07-5.04) 

OR 3.15 (1.39-7.14) 

OR 0.21 (0.04-0.97) p=0.046 

 

 

Table 4. Interleukin-6 inhibition in COVID-19 (selection) 

Study DESIGN, N WHO STAGE INCLUDED, 

DRUG ADMINISTERED 

OUTCOMES RESULT 

COVACTA 

[468] 

Multinational 

RCT, 

N=452 

8mg/kg Tocilizumab iv once 

or twice. 

Hospitalized patients at WHO 

stage ≥4.  

Co-administration of SOC 

except: immunomodulators 

other than GCs 

Median ordinal scale D28 

Median ordinal scale D14 

Mortality overall D28 

Median ordinal scale D28 if MV 

Need for ICU transfer 

 

 

1.0 (TCZ); 2.0 (1.0-4.0) placebo, p=0.31 

3.0 (2.0-4.0) TCZ; 4.0 (3.0-5.0) placebo 

19.7%  TCZ; 19.4% placebo; p=0.94 

5.0 (3.0-5.0) TCZ; 5.0 (4.0-6.0) placebo 

21.3%  TCZ; 35.9% placebo 

EMPACTA 

[469] 

Double-blinded, 

placebo- 

controlled RCT, 

n=249 

8mg/kg Tocilizumab i.v. 

Hospitalized patients at WHO 

stage ≥4. excluded if requiring 

pressure support, >50% 

received steroids 

Progression to MV or death, 

(composite) overall 

Mortality Overall 

 

12.0 (8.5-16.9)% TCZ; 19.3 (13.3.-27.4)% 

placebo; HR 0.56; p=0.04 

11.6% TCZ; 11.8% placebo; p=N.S. 

 

BACC 

BAY[470] 

Double-blinded, 

placebo- 

controlled RCT, 

n=243 

8mg/kg Toclizumab single 

dose. 

majority WHO stage 3 

(supplemental oxygen only).  

GCs in 6% placebo, 11% TCZ 

Mortality D28 

 

Time to ICU admission or death 

Oxygen weaned at D14 

10.6 (6.7-16.6) TCZ; 12.5 (6.9-22)% 

placebo, p=0.64 

15.9 TCZ; 15.8% placebo, p=0.97 

75.4% TCZ; 78.8% placebo, p=N.S. 

 

CORIMUNO-

TOCI[471] 

RCT, n=131 Tocilizumab 8mg/kg, repeat if 

no improvement  

28D mortality 

 

7/64 (89%) TCZ, 8/67 (88%) SOC; HR 0.92 

(0.33-2.53) 
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GCs in 33% 

Patients at WHO stage ≥3 

Oxygen weaned by D28 89% TCZ; 75% SOC; HR 1.41 (0.98-2.01) 

 

 

 

Table 5. Jak-inhibitor trials in COVID-19 (selection) 

Study DESIGN, N WHO STAGE INCLUDED, 

DRUG ADMINISTERED 

OUTCOMES RESULT 

Bronte 

[472] 

Observational, 

n=96 (n=20 

treatment/  n=76 

control) 

Baricitinib 4mg BD for 2d, 

then 4mg OD for 1 week. 

Clinical stage not specified. 

narrative Faster reduction in O2 supplementation 

Cantini 

[286] 

Observational, 

retrospective. 

N=192 (78/113) 

Baricitinib.  

Moderate COVID-19. FiO2 

200-300.  

No GCs given 

14D mortality 

ICU admission at 2 weeks 

Discharge at 2 weeks 

 

0% vs 6.4% , p=0.01 

0.88% vs 17.9%, p≤0.001 

77.8% vs 12.8%,  p≤0.0001 

 

Cantini 

[285] 

observational, 

n=24 (12/12) 

Baricitinib 2 weeks, 

combined LPV/r, HCQ. 

mild-moderate COVID-19, 

SaO2 <93%  

Mortality 

ICU admission 

Discharge at 14D 

1/20 (5%) vs 25/56 (45%) 

0% vs 33%, p=0.093 

58% vs 8%, p=0.027 

Rosas [473] Retrospective  

N=60 

Baricitinib, TCZ or combine 

baricitinib and TCZ. 

Moderate-severe disease 

2/12 deaths on baricitinib monotherapy 

4/20 deaths on TCZ monotherapy 

3/11 deaths on baricitinib +TCZ  

Motality lowest on baracitinib 

monotherapy.  

No serious adverse events were observed 

Cao [474] RCT open label, 

n=43 (22/21) 

Ruxolitinib  (10mg BD for 

14d) WHO stages 4 (most) 

and 5 

Mortality 

Clinical improvement D14 

3 (7.3%) vs 3 (14.3%), p=0.23 

21 (51.2%) vs 9 (42.9%), p=0.35 

Giudice 

[475] 

Observational, 

n=17 (7/10) 

Ruxolitinib (10mg BD for 

14d) and Eculizumab (D7 

and D14), hospitalized, 

severe COVID-19. 

Combined with GCs, 

antivirals. 

Mortality 

Progression to ARDS 

1/7 vs 1/10 

1/7 vs 4/10 

Kalil [476] double-blinded, 

placebo 

controlled RCT 

N=1033 

Baricitinib +/- temdesivir 

WHO stage 4ff 

Clinical improvement at D15 

Mortality at 28D all 

Mortality at 28D stage 4 (suppl O2) 

Mortality at 28D stage 5 (HF or NIV) 

OR 1.3 (1.0-1.6) 

5.1% vs 7.8% (HR 0.65 (0.39-1.09) 

1.9% vs 4.7% (HR 0.4 (0.14-1.14) 

7.5% vs 12.9%, HR 0.55 (0.22-1.38) 
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(515/518) Time to recovery WHO stage 3   

Time to recovery WHO stage 4    

Time to recovery WHO stage 5 

Time to recovery MV 

RR 0.88 (0.63-1.23)  

RR 1.17 (0.98-1.39) 

RR 1.51 (1.1-2.08) 

RR 1.08 (0.59-1.97) 

Marconi 

[484] 

Double blinded, 

placebo-

controlled RCT 

Baricitinib 4mg OD for 14d 

WHO stages 3, 4, 5 

28d Mortality overall 

28d Mortality WHO stage 4 

28d Mortality WHO stage 5           

HR 0.57 [0.41-0.78] 

HR 0.75 [0.45-1.16] 

HR 0.52 [0.33-0.80] 

Guimaraes 

[291] 

Placebo-

controlled, open 

label RCT 

Tofacitinib 10mgBD for 14d 

WHO stage 4, 5 (high flow 

but no pressure support) 

Death or MV day 28 

Death 28 d (any cause) 

18.1% vs 29% (HR0.63 [0.41-0.97] 

2.8% vs 5.5% (HR 0.49 [0.15-1.63] 

 

 

Table 6. Trials assessing heparin and Aspirin use in COVID-19 (selection) 

Study Design, intervention, n Parameters Outcome 

Pavoni 

[477] 

Observational, n=42 

WHO stage ≥5ff,  

high risk group: 90% MV, 

low risk group: 23% MV 

DD≤3000 n=22: ASA, LMWH 4000-6000IU 

DD≥3000 n=20: ASA, LMWH HD 100IU/kg  

 

 

LR group: 14% VTE, 4.5% PE;  Mortality: 18%      

HR group: 65% VTE, 10% PE;   Mortality: 25% 

 

Chow 

[478] 

Observational retrospective 

cohort, n=412 

 

WHO stages 4, 5 

 

N=314 no aspirin 

N=98   aspirin prior to admission  

Progression to MV 

Progression to ICU 

In-hospital mortality 

 

 

aHR 0.56, 0.37-0.85, p=0.007 

aHR 0.57, 0.38-0.85, p=0.005 

aHR 0.53, 0.31-0.90, p=0.02 

Yuan 

[479] 

Observational, n=183 

(52/131) patients with 

coronary artery disease (all 

WHO stages) who were 

either on ongoing ASA or not 

WHO stages 

5 (HF O2) 84.6% (ASA), 80.9% (no ASA) 

5 (NIV)     19.2% (ASA), 26%    (no ASA) 

6ff (MV)   1.9% (no ASA), 11.5% (no ASA) 

All-cause mortality 

 

 

 

 

OR 0.94 (0.41-2.17), p=0.89 

Petito 

[316] 

Observational, Netosis 

markers in 

n=36 COVID-19 patients, 

n=31 healthy controls 

Prediction of VTE:   MPO-DNA 

                                  Cit3H 

                                   

AUC 0.77, p<0.001 

AUC 0.79, p<0.001 

 

Hasan 

[481] 

Metanalysis of  12 studies. 

ICU COVID-19 patients, 

UFH or LMWH 

Prophylactic vs therapeutic anticoagulation of 

patients with COVID-19 on ICU 

Pooled prevalence of VTE (all) 

 

 

31% (21-43%) 
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VTE in prophylactic  

VTE in therapeutic (and prophylactic) 

38% (10-70%) 

27% (17-40%) 

Lu [432] Metanalysis,  

20 observational (VTE 

incidence)  

5 observational (VTE and 

mortality) 

 

Incidence VTE (pooled, all) 

Incidence VTE (pooled, ICU) 

Incidence PE (pooled, all) 

Incidence PE (pooled ICU) 

Incidence DVT (pooled, all) 

Incidence DVT (pooled ICU) 

Mortality (with/without heparinization 

n=2886/5647) 

255/ 1808,     21% (15-27%) 

169/656,        27% (16-38%) 

238/1793       15% (10-20%) 

148/690          20% (9-31%) 

212/1243        27% (19-36%) 

99/579            33% (19-47%) 

RR 0.86 (0.69-1.09) 

 

Birocchi 

[430] 

Metanalysis, 26 studies  

(17 COVID-19 studies, 

n=3224; 7 non-COVID-19 

studies, n=11.985) 

67% COVID-19 on heparin prophylaxis 

16% COVID-19 on therapeutic heparin 

DVT prevalence (pooled) 

PE (pooled) 

Non ICU 

        DVT 

        PE 

ICU patients only 

        DVT 

        PE 

 

 

15.4% (4.08-31.8%) vs 4.2% (2.3-6.7%) p=0.046 

4.9% (0.3-13%) vs 0.2% (0.03-0.6%) p=0.013 

2.63%(0.7-5.6%) vs 3.64 (1.9-5.8%) p=0.48 

2.83% (1.2-5.1%) vs 0.11 (0.0-0.3), p<0.0001 

9.1% (3.6-16.7%) vs 7.4% (6.2-8.7%) p=0.63 

11.7% (5.3-20.1) vs 0.96% (0.57-1.5%) p=0.0001 

22.2% (5.3-44.6%) vs 6.4% (3.2-10.4%) p=0.48 

57% (38-78%) vs 11.5% (6.9-17.6%) p=0.0002 

Sridharan 

[433] 

Metanalysis, 11 studies VTE in hospitalized COVID-19 patients 

Prophylactic heparin dose 

Therapeutic heparin dose 

 

12.5% 

17.2% 

OR 0.33 (0.14-0.75), p=0.008 

 

 
Figure 1.: WHO Ordinal 9 Point Scale and therapeutic options recommended and under investigation during the different disease stages. Jo
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